MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txopn Structured version   Visualization version   GIF version

Theorem txopn 21215
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))

Proof of Theorem txopn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txbasex 21179 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
3 bastg 20581 . . . . 5 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
42, 3syl 17 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
54adantr 480 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
6 eqid 2610 . . . . . 6 (𝐴 × 𝐵) = (𝐴 × 𝐵)
7 xpeq1 5052 . . . . . . . 8 (𝑢 = 𝐴 → (𝑢 × 𝑣) = (𝐴 × 𝑣))
87eqeq2d 2620 . . . . . . 7 (𝑢 = 𝐴 → ((𝐴 × 𝐵) = (𝑢 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝑣)))
9 xpeq2 5053 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴 × 𝑣) = (𝐴 × 𝐵))
109eqeq2d 2620 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴 × 𝐵) = (𝐴 × 𝑣) ↔ (𝐴 × 𝐵) = (𝐴 × 𝐵)))
118, 10rspc2ev 3295 . . . . . 6 ((𝐴𝑅𝐵𝑆 ∧ (𝐴 × 𝐵) = (𝐴 × 𝐵)) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
126, 11mp3an3 1405 . . . . 5 ((𝐴𝑅𝐵𝑆) → ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣))
13 xpexg 6858 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ V)
14 eqid 2610 . . . . . . 7 (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
1514elrnmpt2g 6670 . . . . . 6 ((𝐴 × 𝐵) ∈ V → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1613, 15syl 17 . . . . 5 ((𝐴𝑅𝐵𝑆) → ((𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ↔ ∃𝑢𝑅𝑣𝑆 (𝐴 × 𝐵) = (𝑢 × 𝑣)))
1712, 16mpbird 246 . . . 4 ((𝐴𝑅𝐵𝑆) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
1817adantl 481 . . 3 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
195, 18sseldd 3569 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
201txval 21177 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2120adantr 480 . 2 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
2219, 21eleqtrrd 2691 1 (((𝑅𝑉𝑆𝑊) ∧ (𝐴𝑅𝐵𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  wss 3540   × cxp 5036  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  topGenctg 15921   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-topgen 15927  df-tx 21175
This theorem is referenced by:  txcld  21216  txbasval  21219  neitx  21220  tx1cn  21222  tx2cn  21223  txlly  21249  txnlly  21250  txhaus  21260  txlm  21261  tx1stc  21263  txkgen  21265  xkococnlem  21272  cxpcn3  24289  cvmlift2lem11  30549  cvmlift2lem12  30550
  Copyright terms: Public domain W3C validator