MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx1stc Structured version   Visualization version   GIF version

Theorem tx1stc 21263
Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx1stc ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ 1st𝜔)

Proof of Theorem tx1stc
Dummy variables 𝑎 𝑏 𝑚 𝑛 𝑝 𝑞 𝑟 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21056 . . 3 (𝑅 ∈ 1st𝜔 → 𝑅 ∈ Top)
2 1stctop 21056 . . 3 (𝑆 ∈ 1st𝜔 → 𝑆 ∈ Top)
3 txtop 21182 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 493 . 2 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2610 . . . . . . . 8 𝑅 = 𝑅
651stcclb 21057 . . . . . . 7 ((𝑅 ∈ 1st𝜔 ∧ 𝑢 𝑅) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
76ad2ant2r 779 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))))
8 eqid 2610 . . . . . . . 8 𝑆 = 𝑆
981stcclb 21057 . . . . . . 7 ((𝑆 ∈ 1st𝜔 ∧ 𝑣 𝑆) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
109ad2ant2l 778 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
11 reeanv 3086 . . . . . . 7 (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ (∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
12 an4 861 . . . . . . . . 9 (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ↔ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))))
13 txopn 21215 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑚𝑅𝑛𝑆)) → (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1413ralrimivva 2954 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
151, 2, 14syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
1615adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
17 elpwi 4117 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ 𝒫 𝑅𝑎𝑅)
18 ssralv 3629 . . . . . . . . . . . . . . . . . 18 (𝑎𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
1917, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ 𝒫 𝑅 → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
20 elpwi 4117 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ 𝒫 𝑆𝑏𝑆)
21 ssralv 3629 . . . . . . . . . . . . . . . . . . 19 (𝑏𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ 𝒫 𝑆 → (∀𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2322ralimdv 2946 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ 𝒫 𝑆 → (∀𝑚𝑎𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2419, 23sylan9 687 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆) → (∀𝑚𝑅𝑛𝑆 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
2516, 24mpan9 485 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
26 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
2726fmpt2 7126 . . . . . . . . . . . . . . 15 (∀𝑚𝑎𝑛𝑏 (𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
2825, 27sylib 207 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆))
29 frn 5966 . . . . . . . . . . . . . 14 ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)⟶(𝑅 ×t 𝑆) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
3028, 29syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
31 ovex 6577 . . . . . . . . . . . . . 14 (𝑅 ×t 𝑆) ∈ V
3231elpw2 4755 . . . . . . . . . . . . 13 (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ⊆ (𝑅 ×t 𝑆))
3330, 32sylibr 223 . . . . . . . . . . . 12 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
3433adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆))
35 omelon 8426 . . . . . . . . . . . . . . 15 ω ∈ On
36 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑏 ∈ V
3736xpdom1 7944 . . . . . . . . . . . . . . . . 17 (𝑎 ≼ ω → (𝑎 × 𝑏) ≼ (ω × 𝑏))
38 omex 8423 . . . . . . . . . . . . . . . . . 18 ω ∈ V
3938xpdom2 7940 . . . . . . . . . . . . . . . . 17 (𝑏 ≼ ω → (ω × 𝑏) ≼ (ω × ω))
40 domtr 7895 . . . . . . . . . . . . . . . . 17 (((𝑎 × 𝑏) ≼ (ω × 𝑏) ∧ (ω × 𝑏) ≼ (ω × ω)) → (𝑎 × 𝑏) ≼ (ω × ω))
4137, 39, 40syl2an 493 . . . . . . . . . . . . . . . 16 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ (ω × ω))
42 xpomen 8721 . . . . . . . . . . . . . . . 16 (ω × ω) ≈ ω
43 domentr 7901 . . . . . . . . . . . . . . . 16 (((𝑎 × 𝑏) ≼ (ω × ω) ∧ (ω × ω) ≈ ω) → (𝑎 × 𝑏) ≼ ω)
4441, 42, 43sylancl 693 . . . . . . . . . . . . . . 15 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ≼ ω)
45 ondomen 8743 . . . . . . . . . . . . . . 15 ((ω ∈ On ∧ (𝑎 × 𝑏) ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
4635, 44, 45sylancr 694 . . . . . . . . . . . . . 14 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → (𝑎 × 𝑏) ∈ dom card)
47 vex 3176 . . . . . . . . . . . . . . . . 17 𝑚 ∈ V
48 vex 3176 . . . . . . . . . . . . . . . . 17 𝑛 ∈ V
4947, 48xpex 6860 . . . . . . . . . . . . . . . 16 (𝑚 × 𝑛) ∈ V
5026, 49fnmpt2i 7128 . . . . . . . . . . . . . . 15 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏)
51 dffn4 6034 . . . . . . . . . . . . . . 15 ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) Fn (𝑎 × 𝑏) ↔ (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
5250, 51mpbi 219 . . . . . . . . . . . . . 14 (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))
53 fodomnum 8763 . . . . . . . . . . . . . 14 ((𝑎 × 𝑏) ∈ dom card → ((𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)):(𝑎 × 𝑏)–onto→ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏)))
5446, 52, 53mpisyl 21 . . . . . . . . . . . . 13 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏))
55 domtr 7895 . . . . . . . . . . . . 13 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
5654, 44, 55syl2anc 691 . . . . . . . . . . . 12 ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
5756ad2antrl 760 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω)
581, 2anim12i 588 . . . . . . . . . . . . . . 15 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
5958ad3antrrr 762 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑅 ∈ Top ∧ 𝑆 ∈ Top))
60 eltx 21181 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
6159, 60syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
62 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑤 = ⟨𝑢, 𝑣⟩ → (𝑤 ∈ (𝑟 × 𝑠) ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠)))
6362anbi1d 737 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨𝑢, 𝑣⟩ → ((𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
64632rexbidv 3039 . . . . . . . . . . . . . . 15 (𝑤 = ⟨𝑢, 𝑣⟩ → (∃𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) ↔ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
6564rspccv 3279 . . . . . . . . . . . . . 14 (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
66 r19.27v 3052 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))
67 r19.29 3054 . . . . . . . . . . . . . . . . . . 19 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
68 r19.29 3054 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
69 opelxp 5070 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ↔ (𝑢𝑟𝑣𝑠))
70 pm3.35 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))
71 pm3.35 609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))
7270, 71anim12i 588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑢𝑟 ∧ (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑣𝑠 ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7372an4s 865 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑢𝑟𝑣𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7469, 73sylanb 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
7574anim1i 590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7675anasss 677 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7776an12s 839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
7877expl 646 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
7978reximdv 2999 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → (∃𝑠𝑆 ((𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
8068, 79syl5 33 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) → ((∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)))
8180impl 648 . . . . . . . . . . . . . . . . . . . 20 ((((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8281reximi 2994 . . . . . . . . . . . . . . . . . . 19 (∃𝑟𝑅 (((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8367, 82syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑟𝑅 ((𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
8466, 83sylan 487 . . . . . . . . . . . . . . . . 17 (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧))
85 reeanv 3086 . . . . . . . . . . . . . . . . . . . 20 (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ↔ (∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))
86 simpr1l 1111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑝𝑎)
87 simpr1r 1112 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → 𝑞𝑏)
88 eqidd 2611 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) = (𝑝 × 𝑞))
89 xpeq1 5052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑝 → (𝑚 × 𝑛) = (𝑝 × 𝑛))
9089eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑝 → ((𝑝 × 𝑞) = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑛)))
91 xpeq2 5053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑞 → (𝑝 × 𝑛) = (𝑝 × 𝑞))
9291eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑞 → ((𝑝 × 𝑞) = (𝑝 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑝 × 𝑞)))
9390, 92rspc2ev 3295 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑎𝑞𝑏 ∧ (𝑝 × 𝑞) = (𝑝 × 𝑞)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
9486, 87, 88, 93syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
95 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑝 ∈ V
96 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑞 ∈ V
9795, 96xpex 6860 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑝 × 𝑞) ∈ V
98 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝑝 × 𝑞) → (𝑥 = (𝑚 × 𝑛) ↔ (𝑝 × 𝑞) = (𝑚 × 𝑛)))
99982rexbidv 3039 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝑝 × 𝑞) → (∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛) ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛)))
10097, 99elab 3319 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)} ↔ ∃𝑚𝑎𝑛𝑏 (𝑝 × 𝑞) = (𝑚 × 𝑛))
10194, 100sylibr 223 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)})
10226rnmpt2 6668 . . . . . . . . . . . . . . . . . . . . . . . 24 ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) = {𝑥 ∣ ∃𝑚𝑎𝑛𝑏 𝑥 = (𝑚 × 𝑛)}
103101, 102syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)))
104 simpr2 1061 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)))
105 opelxpi 5072 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢𝑝𝑣𝑞) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
106105ad2ant2r 779 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
107104, 106syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞))
108 xpss12 5148 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝𝑟𝑞𝑠) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
109108ad2ant2l 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
110104, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ (𝑟 × 𝑠))
111 simpr3 1062 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑟 × 𝑠) ⊆ 𝑧)
112110, 111sstrd 3578 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → (𝑝 × 𝑞) ⊆ 𝑧)
113 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (⟨𝑢, 𝑣⟩ ∈ 𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞)))
114 sseq1 3589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑝 × 𝑞) → (𝑤𝑧 ↔ (𝑝 × 𝑞) ⊆ 𝑧))
115113, 114anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑝 × 𝑞) → ((⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)))
116115rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑝 × 𝑞) ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∧ (⟨𝑢, 𝑣⟩ ∈ (𝑝 × 𝑞) ∧ (𝑝 × 𝑞) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
117103, 107, 112, 116syl12anc 1316 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) ∧ ((𝑝𝑎𝑞𝑏) ∧ ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))
1181173exp2 1277 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((𝑝𝑎𝑞𝑏) → (((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
119118rexlimdvv 3019 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (∃𝑝𝑎𝑞𝑏 ((𝑢𝑝𝑝𝑟) ∧ (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
12085, 119syl5bir 232 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) → ((𝑟 × 𝑠) ⊆ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
121120impd 446 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) ∧ (𝑟𝑅𝑠𝑆)) → (((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
122121rexlimdvva 3020 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (∃𝑟𝑅𝑠𝑆 ((∃𝑝𝑎 (𝑢𝑝𝑝𝑟) ∧ ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
12384, 122syl5 33 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → (((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) ∧ ∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧)) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
124123expd 451 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ (𝑎 ≼ ω ∧ 𝑏 ≼ ω)) → ((∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
125124impr 647 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∃𝑟𝑅𝑠𝑆 (⟨𝑢, 𝑣⟩ ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
12665, 125syl9r 76 . . . . . . . . . . . . 13 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (∀𝑤𝑧𝑟𝑅𝑠𝑆 (𝑤 ∈ (𝑟 × 𝑠) ∧ (𝑟 × 𝑠) ⊆ 𝑧) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
12761, 126sylbid 229 . . . . . . . . . . . 12 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → (𝑧 ∈ (𝑅 ×t 𝑆) → (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
128127ralrimiv 2948 . . . . . . . . . . 11 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
129 breq1 4586 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (𝑦 ≼ ω ↔ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω))
130 rexeq 3116 . . . . . . . . . . . . . . 15 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
131130imbi2d 329 . . . . . . . . . . . . . 14 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
132131ralbidv 2969 . . . . . . . . . . . . 13 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → (∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
133129, 132anbi12d 743 . . . . . . . . . . . 12 (𝑦 = ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))) ↔ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
134133rspcev 3282 . . . . . . . . . . 11 ((ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛)) ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤 ∈ ran (𝑚𝑎, 𝑛𝑏 ↦ (𝑚 × 𝑛))(⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
13534, 57, 128, 134syl12anc 1316 . . . . . . . . . 10 (((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) ∧ ((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠))))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
136135ex 449 . . . . . . . . 9 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ 𝑏 ≼ ω) ∧ (∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟)) ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
13712, 136syl5bi 231 . . . . . . . 8 ((((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) ∧ (𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆)) → (((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
138137rexlimdvva 3020 . . . . . . 7 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → (∃𝑎 ∈ 𝒫 𝑅𝑏 ∈ 𝒫 𝑆((𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ (𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
13911, 138syl5bir 232 . . . . . 6 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ((∃𝑎 ∈ 𝒫 𝑅(𝑎 ≼ ω ∧ ∀𝑟𝑅 (𝑢𝑟 → ∃𝑝𝑎 (𝑢𝑝𝑝𝑟))) ∧ ∃𝑏 ∈ 𝒫 𝑆(𝑏 ≼ ω ∧ ∀𝑠𝑆 (𝑣𝑠 → ∃𝑞𝑏 (𝑣𝑞𝑞𝑠)))) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
1407, 10, 139mp2and 711 . . . . 5 (((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) ∧ (𝑢 𝑅𝑣 𝑆)) → ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
141140ralrimivva 2954 . . . 4 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
142 eleq1 2676 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑧 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑧))
143 eleq1 2676 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥𝑤 ↔ ⟨𝑢, 𝑣⟩ ∈ 𝑤))
144143anbi1d 737 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑤𝑤𝑧) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
145144rexbidv 3034 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))
146142, 145imbi12d 333 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
147146ralbidv 2969 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
148147anbi2d 736 . . . . . 6 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
149148rexbidv 3034 . . . . 5 (𝑥 = ⟨𝑢, 𝑣⟩ → (∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧)))))
150149ralxp 5185 . . . 4 (∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∀𝑢 𝑅𝑣 𝑆𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(⟨𝑢, 𝑣⟩ ∈ 𝑧 → ∃𝑤𝑦 (⟨𝑢, 𝑣⟩ ∈ 𝑤𝑤𝑧))))
151141, 150sylibr 223 . . 3 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
1525, 8txuni 21205 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1531, 2, 152syl2an 493 . . . 4 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
154153raleqdv 3121 . . 3 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (∀𝑥 ∈ ( 𝑅 × 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
155151, 154mpbid 221 . 2 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
156 eqid 2610 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
157156is1stc2 21055 . 2 ((𝑅 ×t 𝑆) ∈ 1st𝜔 ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑥 (𝑅 ×t 𝑆)∃𝑦 ∈ 𝒫 (𝑅 ×t 𝑆)(𝑦 ≼ ω ∧ ∀𝑧 ∈ (𝑅 ×t 𝑆)(𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
1584, 155, 157sylanbrc 695 1 ((𝑅 ∈ 1st𝜔 ∧ 𝑆 ∈ 1st𝜔) → (𝑅 ×t 𝑆) ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  wss 3540  𝒫 cpw 4108  cop 4131   cuni 4372   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  Oncon0 5640   Fn wfn 5799  wf 5800  ontowfo 5802  (class class class)co 6549  cmpt2 6551  ωcom 6957  cen 7838  cdom 7839  cardccrd 8644  Topctop 20517  1st𝜔c1stc 21050   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-1stc 21052  df-tx 21175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator