Proof of Theorem is1stc2
Step | Hyp | Ref
| Expression |
1 | | is1stc.1 |
. . 3
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | is1stc 21054 |
. 2
⊢ (𝐽 ∈ 1st𝜔
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))))) |
3 | | elin 3758 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧)) |
4 | | selpw 4115 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ 𝒫 𝑧 ↔ 𝑤 ⊆ 𝑧) |
5 | 4 | anbi2i 726 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ 𝑦 ∧ 𝑤 ∈ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) |
6 | 3, 5 | bitri 263 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ (𝑦 ∩ 𝒫 𝑧) ↔ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) |
7 | 6 | anbi2i 726 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥 ∈ 𝑤 ∧ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧))) |
8 | | an12 834 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑤 ∧ (𝑤 ∈ 𝑦 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
9 | 7, 8 | bitri 263 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
10 | 9 | exbii 1764 |
. . . . . . . . 9
⊢
(∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧)) ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
11 | | eluni 4375 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ (𝑦
∩ 𝒫 𝑧) ↔
∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ (𝑦 ∩ 𝒫 𝑧))) |
12 | | df-rex 2902 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤(𝑤 ∈ 𝑦 ∧ (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
13 | 10, 11, 12 | 3bitr4i 291 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ (𝑦
∩ 𝒫 𝑧) ↔
∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) |
14 | 13 | imbi2i 325 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
15 | 14 | ralbii 2963 |
. . . . . 6
⊢
(∀𝑧 ∈
𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)) ↔ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
16 | 15 | anbi2i 726 |
. . . . 5
⊢ ((𝑦 ≼ ω ∧
∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ (𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
17 | 16 | rexbii 3023 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝐽(𝑦 ≼ ω ∧
∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
18 | 17 | ralbii 2963 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧))) ↔ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
19 | 18 | anbi2i 726 |
. 2
⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
20 | 2, 19 | bitri 263 |
1
⊢ (𝐽 ∈ 1st𝜔
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |