Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.35 | Structured version Visualization version GIF version |
Description: Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.) |
Ref | Expression |
---|---|
pm3.35 | ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 41 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | imp 444 | 1 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 196 df-an 385 |
This theorem is referenced by: ornld 938 r19.29vva 3062 2reu5 3383 intab 4442 dfac5 8834 grothpw 9527 grothpwex 9528 gcdcllem1 15059 gsmsymgreqlem2 17674 neindisj2 20737 tx1stc 21263 ufinffr 21543 ucnima 21895 fmcncfil 29305 sgn3da 29930 bnj605 30231 bnj594 30236 bnj1174 30325 bj-ssbequ2 31832 itg2gt0cn 32635 unirep 32677 ispridl2 33007 cnf1dd 33062 unisnALT 38184 ax6e2ndALT 38188 ssinc 38292 ssdec 38293 fmul01 38647 dvnmptconst 38831 dvnmul 38833 iccpartnel 39976 stgoldbwt 40198 sgoldbalt 40203 bgoldbtbnd 40225 |
Copyright terms: Public domain | W3C validator |