Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > txval | Structured version Visualization version GIF version |
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
txval.1 | ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) |
Ref | Expression |
---|---|
txval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | elex 3185 | . 2 ⊢ (𝑆 ∈ 𝑊 → 𝑆 ∈ V) | |
3 | mpt2eq12 6613 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) | |
4 | 3 | rneqd 5274 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))) |
5 | txval.1 | . . . . 5 ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) | |
6 | 4, 5 | syl6eqr 2662 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)) = 𝐵) |
7 | 6 | fveq2d 6107 | . . 3 ⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦))) = (topGen‘𝐵)) |
8 | df-tx 21175 | . . 3 ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) | |
9 | fvex 6113 | . . 3 ⊢ (topGen‘𝐵) ∈ V | |
10 | 7, 8, 9 | ovmpt2a 6689 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) |
11 | 1, 2, 10 | syl2an 493 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 × cxp 5036 ran crn 5039 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 topGenctg 15921 ×t ctx 21173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-tx 21175 |
This theorem is referenced by: eltx 21181 txtop 21182 txtopon 21204 txopn 21215 txss12 21218 txbasval 21219 txcnp 21233 txcnmpt 21237 txrest 21244 txlm 21261 tx2ndc 21264 txflf 21620 mbfimaopnlem 23228 |
Copyright terms: Public domain | W3C validator |