MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txkgen Structured version   Visualization version   GIF version

Theorem txkgen 21265
Description: The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
txkgen ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)

Proof of Theorem txkgen
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑡 𝑢 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21086 . . 3 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
2 elinel1 3761 . . . 4 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ ran 𝑘Gen)
3 kgentop 21155 . . . 4 (𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top)
42, 3syl 17 . . 3 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ Top)
5 txtop 21182 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
61, 4, 5syl2an 493 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ Top)
7 simplll 794 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ 𝑛-Locally Comp)
8 eqid 2610 . . . . . . . . . 10 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
98mptpreima 5545 . . . . . . . . 9 ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) = {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}
101ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ Top)
11 eqid 2610 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
1211toptopon 20548 . . . . . . . . . . . . . 14 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
1310, 12sylib 207 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ (TopOn‘ 𝑅))
14 idcn 20871 . . . . . . . . . . . . 13 (𝑅 ∈ (TopOn‘ 𝑅) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
1513, 14syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
16 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
1716, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ Top)
18 eqid 2610 . . . . . . . . . . . . . . 15 𝑆 = 𝑆
1918toptopon 20548 . . . . . . . . . . . . . 14 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
2017, 19sylib 207 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (TopOn‘ 𝑆))
21 simpr 476 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦𝑥)
22 simplr 788 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
23 elunii 4377 . . . . . . . . . . . . . . . 16 ((𝑦𝑥𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2421, 22, 23syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2511, 18txuni 21205 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2610, 17, 25syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2710, 17, 5syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
28 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2928kgenuni 21152 . . . . . . . . . . . . . . . . 17 ((𝑅 ×t 𝑆) ∈ Top → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3126, 30eqtrd 2644 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3224, 31eleqtrrd 2691 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 ∈ ( 𝑅 × 𝑆))
33 xp2nd 7090 . . . . . . . . . . . . . 14 (𝑦 ∈ ( 𝑅 × 𝑆) → (2nd𝑦) ∈ 𝑆)
3432, 33syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (2nd𝑦) ∈ 𝑆)
35 cnconst2 20897 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆) ∧ (2nd𝑦) ∈ 𝑆) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
3613, 20, 34, 35syl3anc 1318 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
37 fvresi 6344 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( I ↾ 𝑅)‘𝑡) = 𝑡)
38 fvex 6113 . . . . . . . . . . . . . . . . 17 (2nd𝑦) ∈ V
3938fvconst2 6374 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( 𝑅 × {(2nd𝑦)})‘𝑡) = (2nd𝑦))
4037, 39opeq12d 4348 . . . . . . . . . . . . . . 15 (𝑡 𝑅 → ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩ = ⟨𝑡, (2nd𝑦)⟩)
4140mpteq2ia 4668 . . . . . . . . . . . . . 14 (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
4241eqcomi 2619 . . . . . . . . . . . . 13 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩)
4311, 42txcnmpt 21237 . . . . . . . . . . . 12 ((( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅) ∧ ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆)) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
4415, 36, 43syl2anc 691 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
45 llycmpkgen 21165 . . . . . . . . . . . . 13 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen)
4645ad3antrrr 762 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ ran 𝑘Gen)
476ad2antrr 758 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
48 kgencn3 21171 . . . . . . . . . . . 12 ((𝑅 ∈ ran 𝑘Gen ∧ (𝑅 ×t 𝑆) ∈ Top) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
4946, 47, 48syl2anc 691 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
5044, 49eleqtrd 2690 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
51 cnima 20879 . . . . . . . . . 10 (((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
5250, 22, 51syl2anc 691 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
539, 52syl5eqelr 2693 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅)
54 xp1st 7089 . . . . . . . . . 10 (𝑦 ∈ ( 𝑅 × 𝑆) → (1st𝑦) ∈ 𝑅)
5532, 54syl 17 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ 𝑅)
56 1st2nd2 7096 . . . . . . . . . . 11 (𝑦 ∈ ( 𝑅 × 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5732, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5857, 21eqeltrrd 2689 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
59 opeq1 4340 . . . . . . . . . . 11 (𝑡 = (1st𝑦) → ⟨𝑡, (2nd𝑦)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
6059eleq1d 2672 . . . . . . . . . 10 (𝑡 = (1st𝑦) → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
6160elrab 3331 . . . . . . . . 9 ((1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ ((1st𝑦) ∈ 𝑅 ∧ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
6255, 58, 61sylanbrc 695 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
63 nlly2i 21089 . . . . . . . 8 ((𝑅 ∈ 𝑛-Locally Comp ∧ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅 ∧ (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
647, 53, 62, 63syl3anc 1318 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
6510adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑅 ∈ Top)
6617adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
67 simprlr 799 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑅)
68 ssrab2 3650 . . . . . . . . . . . . . 14 {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆
6968a1i 11 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆)
70 incom 3767 . . . . . . . . . . . . . . . 16 ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) = (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
71 simprll 798 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
7271elpwid 4118 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ⊆ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
73 ssrab2 3650 . . . . . . . . . . . . . . . . . . . . . 22 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ⊆ 𝑅
7472, 73syl6ss 3580 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 𝑅)
7574adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 𝑅)
76 elpwi 4117 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ 𝒫 𝑆𝑘 𝑆)
7776ad2antrl 760 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 𝑆)
78 eldif 3550 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥))
7978anbi1i 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
80 anass 679 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8179, 80bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8281rexbii2 3021 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
83 ancom 465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥))
84 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩))
8584eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏))
86 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → (𝑡𝑥 ↔ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8786notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (¬ 𝑡𝑥 ↔ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8885, 87anbi12d 743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = ⟨𝑎, 𝑢⟩ → ((((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8983, 88syl5bb 271 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = ⟨𝑎, 𝑢⟩ → ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
9089rexxp 5186 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
9182, 90bitri 263 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
92 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 𝑅𝑘 𝑆) → 𝑠 𝑅)
9392sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑎 𝑅)
9493adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑎 𝑅)
95 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑘 𝑆)
9695sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑢 𝑆)
9794, 96opelxpd 5073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ⟨𝑎, 𝑢⟩ ∈ ( 𝑅 × 𝑆))
9897fvresd 6118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = (2nd ‘⟨𝑎, 𝑢⟩))
99 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎 ∈ V
100 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑢 ∈ V
10199, 100op2nd 7068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2nd ‘⟨𝑎, 𝑢⟩) = 𝑢
10298, 101syl6eq 2660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑢)
103102eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏𝑢 = 𝑏))
104103anbi1d 737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
105104rexbidva 3031 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
106 opeq2 4341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = 𝑏 → ⟨𝑎, 𝑢⟩ = ⟨𝑎, 𝑏⟩)
107106eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑏 → (⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
108107notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑏 → (¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
109108ceqsrexbv 3307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
110105, 109syl6bb 275 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
111110rexbidva 3031 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
112 r19.42v 3073 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
113111, 112syl6bb 275 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
11491, 113syl5bb 271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
115 f2ndres 7082 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆
116 ffn 5958 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆 → (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆))
117115, 116ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆)
118 difss 3699 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘)
119 xpss12 5148 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
120118, 119syl5ss 3579 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆))
121 fvelimab 6163 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆) ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆)) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
122117, 120, 121sylancr 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
123 eldif 3550 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
124 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 𝑅𝑘 𝑆) → 𝑘 𝑆)
125124sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → 𝑏 𝑆)
126 sneq 4135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = 𝑏 → {𝑣} = {𝑏})
127126xpeq2d 5063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = 𝑏 → (𝑠 × {𝑣}) = (𝑠 × {𝑏}))
128127sseq1d 3595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {𝑏}) ⊆ 𝑥))
129 dfss3 3558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥)
130 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = ⟨𝑎, 𝑡⟩ → (𝑘𝑥 ↔ ⟨𝑎, 𝑡⟩ ∈ 𝑥))
131130ralxp 5185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥 ↔ ∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥)
132 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑏 ∈ V
133 opeq2 4341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑏 → ⟨𝑎, 𝑡⟩ = ⟨𝑎, 𝑏⟩)
134133eleq1d 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑏 → (⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
135132, 134ralsn 4169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥)
136135ralbii 2963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
137129, 131, 1363bitri 285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
138128, 137syl6bb 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
139138elrab3 3332 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 𝑆 → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
140125, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
141140notbid 307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
142 rexnal 2978 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
143141, 142syl6bbr 277 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
144143pm5.32da 671 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
145123, 144syl5bb 271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
146114, 122, 1453bitr4d 299 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ 𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
147146eqrdv 2608 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 𝑅𝑘 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
14875, 77, 147syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
149 difin 3823 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
15066adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
15118restuni 20776 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ Top ∧ 𝑘 𝑆) → 𝑘 = (𝑆t 𝑘))
152150, 77, 151syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 = (𝑆t 𝑘))
153152difeq1d 3689 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
154149, 153syl5eqr 2658 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
155148, 154eqtrd 2644 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
15616ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
157156elin2d 3765 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Haus)
158 df-ima 5051 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥))
159 resres 5329 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) = (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)))
160 inss2 3796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ((𝑠 × 𝑘) ∖ 𝑥)
161160, 118sstri 3577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘)
162 ssres2 5345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘) → (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘)))
163161, 162ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘))
164159, 163eqsstri 3598 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘))
165 rnss 5275 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘)) → ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘)))
166164, 165ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
167158, 166eqsstri 3598 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
168 f2ndres 7082 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘
169 frn 5966 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘 → ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘)
170168, 169ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘
171167, 170sstri 3577 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘
172171, 77syl5ss 3579 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆)
17313ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ (TopOn‘ 𝑅))
174150, 19sylib 207 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (TopOn‘ 𝑆))
175 tx2cn 21223 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
176173, 174, 175syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
17727ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅 ×t 𝑆) ∈ Top)
178118a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘))
179 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑠 ∈ V
180 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
181179, 180xpex 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 × 𝑘) ∈ V
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ∈ V)
183 restabs 20779 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ×t 𝑆) ∈ Top ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘) ∧ (𝑠 × 𝑘) ∈ V) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
184177, 178, 182, 183syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
18565adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ Top)
186156, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
187179a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 ∈ V)
188 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 ∈ 𝒫 𝑆)
189 txrest 21244 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
190185, 186, 187, 188, 189syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
191 simprr3 1104 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑅t 𝑠) ∈ Comp)
192191adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅t 𝑠) ∈ Comp)
193 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Comp)
194 txcmp 21256 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅t 𝑠) ∈ Comp ∧ (𝑆t 𝑘) ∈ Comp) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
195192, 193, 194syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
196190, 195eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp)
197 difin 3823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ((𝑠 × 𝑘) ∖ 𝑥)
19875, 77, 119syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
199185, 150, 25syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
200198, 199sseqtrd 3604 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆))
20128restuni 20776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
202177, 200, 201syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
203202difeq1d 3689 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
204197, 203syl5eqr 2658 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
205 resttop 20774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ∈ V) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
206177, 181, 205sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
207 incom 3767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 × 𝑘) ∩ 𝑥) = (𝑥 ∩ (𝑠 × 𝑘))
20822ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
209 kgeni 21150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) ∧ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
210208, 196, 209syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
211207, 210syl5eqel 2692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
212 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))
213212opncld 20647 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top ∧ ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
214206, 211, 213syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
215204, 214eqeltrd 2688 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
216 cmpcld 21015 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp ∧ ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
217196, 215, 216syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
218184, 217eqeltrrd 2689 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
219 imacmp 21010 . . . . . . . . . . . . . . . . . . . . 21 (((2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ∧ ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
220176, 218, 219syl2anc 691 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
22118hauscmp 21020 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Haus ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆 ∧ (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
222157, 172, 220, 221syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
223171a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘)
22418restcldi 20787 . . . . . . . . . . . . . . . . . . 19 ((𝑘 𝑆 ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆) ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
22577, 222, 223, 224syl3anc 1318 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
226155, 225eqeltrrd 2689 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘)))
227 resttop 20774 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 𝑆) → (𝑆t 𝑘) ∈ Top)
228150, 188, 227syl2anc 691 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Top)
229 inss1 3795 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑘
230229, 152syl5sseq 3616 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘))
231 eqid 2610 . . . . . . . . . . . . . . . . . . 19 (𝑆t 𝑘) = (𝑆t 𝑘)
232231isopn2 20646 . . . . . . . . . . . . . . . . . 18 (((𝑆t 𝑘) ∈ Top ∧ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
233228, 230, 232syl2anc 691 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
234226, 233mpbird 246 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘))
23570, 234syl5eqel 2692 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘))
236235expr 641 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑘 ∈ 𝒫 𝑆) → ((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
237236ralrimiva 2949 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
23866, 19sylib 207 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (TopOn‘ 𝑆))
239 elkgen 21149 . . . . . . . . . . . . . 14 (𝑆 ∈ (TopOn‘ 𝑆) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
240238, 239syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
24169, 237, 240mpbir2and 959 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆))
24216adantr 480 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
243242, 2syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ ran 𝑘Gen)
244 kgenidm 21160 . . . . . . . . . . . . 13 (𝑆 ∈ ran 𝑘Gen → (𝑘Gen‘𝑆) = 𝑆)
245243, 244syl 17 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑘Gen‘𝑆) = 𝑆)
246241, 245eleqtrd 2690 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)
247 txopn 21215 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑢𝑅 ∧ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24865, 66, 67, 246, 247syl22anc 1319 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24957adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
250 simprr1 1102 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (1st𝑦) ∈ 𝑢)
25134adantr 480 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ 𝑆)
252 relxp 5150 . . . . . . . . . . . . . . 15 Rel (𝑠 × {(2nd𝑦)})
253252a1i 11 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑠 × {(2nd𝑦)}))
254 opelxp 5070 . . . . . . . . . . . . . . 15 (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) ↔ (𝑎𝑠𝑏 ∈ {(2nd𝑦)}))
25572sselda 3568 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → 𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
256 opeq1 4340 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑎 → ⟨𝑡, (2nd𝑦)⟩ = ⟨𝑎, (2nd𝑦)⟩)
257256eleq1d 2672 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
258257elrab 3331 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ (𝑎 𝑅 ∧ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
259258simprbi 479 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
261 elsni 4142 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ {(2nd𝑦)} → 𝑏 = (2nd𝑦))
262261opeq2d 4347 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd𝑦)⟩)
263262eleq1d 2672 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {(2nd𝑦)} → (⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
264260, 263syl5ibrcom 236 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
265264expimpd 627 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑠𝑏 ∈ {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
266254, 265syl5bi 231 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
267253, 266relssdv 5135 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑠 × {(2nd𝑦)}) ⊆ 𝑥)
268 sneq 4135 . . . . . . . . . . . . . . . 16 (𝑣 = (2nd𝑦) → {𝑣} = {(2nd𝑦)})
269268xpeq2d 5063 . . . . . . . . . . . . . . 15 (𝑣 = (2nd𝑦) → (𝑠 × {𝑣}) = (𝑠 × {(2nd𝑦)}))
270269sseq1d 3595 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑦) → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
271270elrab 3331 . . . . . . . . . . . . 13 ((2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ((2nd𝑦) ∈ 𝑆 ∧ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
272251, 267, 271sylanbrc 695 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
273250, 272opelxpd 5073 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
274249, 273eqeltrd 2688 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
275 relxp 5150 . . . . . . . . . . . 12 Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
276275a1i 11 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
277 opelxp 5070 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
278128elrab 3331 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ (𝑏 𝑆 ∧ (𝑠 × {𝑏}) ⊆ 𝑥))
279278simprbi 479 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → (𝑠 × {𝑏}) ⊆ 𝑥)
280 simprr2 1103 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑠)
281280sselda 3568 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → 𝑎𝑠)
282 vsnid 4156 . . . . . . . . . . . . . . 15 𝑏 ∈ {𝑏}
283 opelxpi 5072 . . . . . . . . . . . . . . 15 ((𝑎𝑠𝑏 ∈ {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
284281, 282, 283sylancl 693 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
285 ssel 3562 . . . . . . . . . . . . . 14 ((𝑠 × {𝑏}) ⊆ 𝑥 → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
286279, 284, 285syl2imc 40 . . . . . . . . . . . . 13 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
287286expimpd 627 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
288277, 287syl5bi 231 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
289276, 288relssdv 5135 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)
290 eleq2 2677 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑦𝑡𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
291 sseq1 3589 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑡𝑥 ↔ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥))
292290, 291anbi12d 743 . . . . . . . . . . 11 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ((𝑦𝑡𝑡𝑥) ↔ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)))
293292rspcev 3282 . . . . . . . . . 10 (((𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆) ∧ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
294248, 274, 289, 293syl12anc 1316 . . . . . . . . 9 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
295294expr 641 . . . . . . . 8 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ (𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅)) → (((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
296295rexlimdvva 3020 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
29764, 296mpd 15 . . . . . 6 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
298297ralrimiva 2949 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
2996adantr 480 . . . . . 6 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑅 ×t 𝑆) ∈ Top)
300 eltop2 20590 . . . . . 6 ((𝑅 ×t 𝑆) ∈ Top → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
301299, 300syl 17 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
302298, 301mpbird 246 . . . 4 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑥 ∈ (𝑅 ×t 𝑆))
303302ex 449 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) → 𝑥 ∈ (𝑅 ×t 𝑆)))
304303ssrdv 3574 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆))
305 iskgen2 21161 . 2 ((𝑅 ×t 𝑆) ∈ ran 𝑘Gen ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆)))
3066, 304, 305sylanbrc 695 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125  cop 4131   cuni 4372  cmpt 4643   I cid 4948   × cxp 5036  ccnv 5037  ran crn 5039  cres 5040  cima 5041  Rel wrel 5043   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  t crest 15904  Topctop 20517  TopOnctopon 20518  Clsdccld 20630   Cn ccn 20838  Hauscha 20922  Compccmp 20999  𝑛-Locally cnlly 21078  𝑘Genckgen 21146   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-nlly 21080  df-kgen 21147  df-tx 21175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator