MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlly2i Structured version   Visualization version   GIF version

Theorem nlly2i 21089
Description: Eliminate the neighborhood symbol from nllyi 21088. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
nlly2i ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Distinct variable groups:   𝑢,𝑠,𝐴   𝑃,𝑠,𝑢   𝑈,𝑠,𝑢   𝐽,𝑠,𝑢

Proof of Theorem nlly2i
StepHypRef Expression
1 nllyi 21088 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))
2 simprrl 800 . . . . . 6 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠𝑈)
3 selpw 4115 . . . . . 6 (𝑠 ∈ 𝒫 𝑈𝑠𝑈)
42, 3sylibr 223 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑈)
5 simpl1 1057 . . . . . . . 8 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ 𝑛-Locally 𝐴)
6 nllytop 21086 . . . . . . . 8 (𝐽 ∈ 𝑛-Locally 𝐴𝐽 ∈ Top)
75, 6syl 17 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝐽 ∈ Top)
8 simprl 790 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → 𝑠 ∈ ((nei‘𝐽)‘{𝑃}))
9 neii2 20722 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑠 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
107, 8, 9syl2anc 691 . . . . . 6 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠))
11 simprl 790 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → {𝑃} ⊆ 𝑢)
12 simpll3 1095 . . . . . . . . . . 11 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑈)
13 snssg 4268 . . . . . . . . . . 11 (𝑃𝑈 → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1412, 13syl 17 . . . . . . . . . 10 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢 ↔ {𝑃} ⊆ 𝑢))
1511, 14mpbird 246 . . . . . . . . 9 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑃𝑢)
16 simprr 792 . . . . . . . . 9 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → 𝑢𝑠)
17 simprrr 801 . . . . . . . . . 10 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝐽t 𝑠) ∈ 𝐴)
1817adantr 480 . . . . . . . . 9 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝐽t 𝑠) ∈ 𝐴)
1915, 16, 183jca 1235 . . . . . . . 8 ((((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) ∧ ({𝑃} ⊆ 𝑢𝑢𝑠)) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
2019ex 449 . . . . . . 7 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (({𝑃} ⊆ 𝑢𝑢𝑠) → (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2120reximdv 2999 . . . . . 6 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (∃𝑢𝐽 ({𝑃} ⊆ 𝑢𝑢𝑠) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2210, 21mpd 15 . . . . 5 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
234, 22jca 553 . . . 4 (((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) ∧ (𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴))) → (𝑠 ∈ 𝒫 𝑈 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
2423ex 449 . . 3 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ((𝑠 ∈ ((nei‘𝐽)‘{𝑃}) ∧ (𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴)) → (𝑠 ∈ 𝒫 𝑈 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))))
2524reximdv2 2997 . 2 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → (∃𝑠 ∈ ((nei‘𝐽)‘{𝑃})(𝑠𝑈 ∧ (𝐽t 𝑠) ∈ 𝐴) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴)))
261, 25mpd 15 1 ((𝐽 ∈ 𝑛-Locally 𝐴𝑈𝐽𝑃𝑈) → ∃𝑠 ∈ 𝒫 𝑈𝑢𝐽 (𝑃𝑢𝑢𝑠 ∧ (𝐽t 𝑠) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  wrex 2897  wss 3540  𝒫 cpw 4108  {csn 4125  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  neicnei 20711  𝑛-Locally cnlly 21078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-top 20521  df-nei 20712  df-nlly 21080
This theorem is referenced by:  restnlly  21095  nllyrest  21099  nllyidm  21102  cldllycmp  21108  txnlly  21250  txkgen  21265  xkococnlem  21272  conpcon  30471  cvmliftmolem2  30518  cvmlift3lem8  30562
  Copyright terms: Public domain W3C validator