MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Structured version   Visualization version   GIF version

Theorem kgeni 21150
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))

Proof of Theorem kgeni
Dummy variables 𝑦 𝑥 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 3785 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = (𝐴 ∩ (𝐾 𝐽))
2 in32 3787 . . . . 5 ((𝐴𝐾) ∩ 𝐽) = ((𝐴 𝐽) ∩ 𝐾)
31, 2eqtr3i 2634 . . . 4 (𝐴 ∩ (𝐾 𝐽)) = ((𝐴 𝐽) ∩ 𝐾)
4 df-kgen 21147 . . . . . . . . . . . 12 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑦 ∈ 𝒫 𝑗((𝑗t 𝑦) ∈ Comp → (𝑥𝑦) ∈ (𝑗t 𝑦))})
54dmmptss 5548 . . . . . . . . . . 11 dom 𝑘Gen ⊆ Top
6 elfvdm 6130 . . . . . . . . . . 11 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ dom 𝑘Gen)
75, 6sseldi 3566 . . . . . . . . . 10 (𝐴 ∈ (𝑘Gen‘𝐽) → 𝐽 ∈ Top)
87adantr 480 . . . . . . . . 9 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ Top)
9 eqid 2610 . . . . . . . . . 10 𝐽 = 𝐽
109toptopon 20548 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
118, 10sylib 207 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐽 ∈ (TopOn‘ 𝐽))
12 simpl 472 . . . . . . . 8 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 ∈ (𝑘Gen‘𝐽))
13 elkgen 21149 . . . . . . . . 9 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))))
1413biimpa 500 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐴 ∈ (𝑘Gen‘𝐽)) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1511, 12, 14syl2anc 691 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽 ∧ ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦))))
1615simpld 474 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐴 𝐽)
17 df-ss 3554 . . . . . 6 (𝐴 𝐽 ↔ (𝐴 𝐽) = 𝐴)
1816, 17sylib 207 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 𝐽) = 𝐴)
1918ineq1d 3775 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐴 𝐽) ∩ 𝐾) = (𝐴𝐾))
203, 19syl5eq 2656 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) = (𝐴𝐾))
21 inss2 3796 . . . . 5 (𝐾 𝐽) ⊆ 𝐽
22 cmptop 21008 . . . . . . . 8 ((𝐽t 𝐾) ∈ Comp → (𝐽t 𝐾) ∈ Top)
2322adantl 481 . . . . . . 7 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Top)
24 restrcl 20771 . . . . . . . 8 ((𝐽t 𝐾) ∈ Top → (𝐽 ∈ V ∧ 𝐾 ∈ V))
2524simprd 478 . . . . . . 7 ((𝐽t 𝐾) ∈ Top → 𝐾 ∈ V)
2623, 25syl 17 . . . . . 6 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → 𝐾 ∈ V)
27 inex1g 4729 . . . . . 6 (𝐾 ∈ V → (𝐾 𝐽) ∈ V)
28 elpwg 4116 . . . . . 6 ((𝐾 𝐽) ∈ V → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
2926, 27, 283syl 18 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ((𝐾 𝐽) ∈ 𝒫 𝐽 ↔ (𝐾 𝐽) ⊆ 𝐽))
3021, 29mpbiri 247 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐾 𝐽) ∈ 𝒫 𝐽)
3115simprd 478 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → ∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)))
329restin 20780 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ V) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
338, 26, 32syl2anc 691 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) = (𝐽t (𝐾 𝐽)))
34 simpr 476 . . . . 5 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t 𝐾) ∈ Comp)
3533, 34eqeltrrd 2689 . . . 4 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐽t (𝐾 𝐽)) ∈ Comp)
36 oveq2 6557 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐽t 𝑦) = (𝐽t (𝐾 𝐽)))
3736eleq1d 2672 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐽t 𝑦) ∈ Comp ↔ (𝐽t (𝐾 𝐽)) ∈ Comp))
38 ineq2 3770 . . . . . . 7 (𝑦 = (𝐾 𝐽) → (𝐴𝑦) = (𝐴 ∩ (𝐾 𝐽)))
3938, 36eleq12d 2682 . . . . . 6 (𝑦 = (𝐾 𝐽) → ((𝐴𝑦) ∈ (𝐽t 𝑦) ↔ (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽))))
4037, 39imbi12d 333 . . . . 5 (𝑦 = (𝐾 𝐽) → (((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)) ↔ ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))))
4140rspcv 3278 . . . 4 ((𝐾 𝐽) ∈ 𝒫 𝐽 → (∀𝑦 ∈ 𝒫 𝐽((𝐽t 𝑦) ∈ Comp → (𝐴𝑦) ∈ (𝐽t 𝑦)) → ((𝐽t (𝐾 𝐽)) ∈ Comp → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))))
4230, 31, 35, 41syl3c 64 . . 3 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴 ∩ (𝐾 𝐽)) ∈ (𝐽t (𝐾 𝐽)))
4320, 42eqeltrrd 2689 . 2 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t (𝐾 𝐽)))
4443, 33eleqtrrd 2691 1 ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝐾) ∈ Comp) → (𝐴𝐾) ∈ (𝐽t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372  dom cdm 5038  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  TopOnctopon 20518  Compccmp 20999  𝑘Genckgen 21146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-rest 15906  df-top 20521  df-topon 20523  df-cmp 21000  df-kgen 21147
This theorem is referenced by:  kgentopon  21151  kgencmp  21158  kgenidm  21160  llycmpkgen2  21163  1stckgen  21167  kgencn3  21171  txkgen  21265
  Copyright terms: Public domain W3C validator