MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   GIF version

Theorem 1stckgen 21167
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen (𝐽 ∈ 1st𝜔 → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem 1stckgen
Dummy variables 𝑘 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 21056 . 2 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ Top)
2 difss 3699 . . . . . . . . . 10 ( 𝐽𝑥) ⊆ 𝐽
3 eqid 2610 . . . . . . . . . . 11 𝐽 = 𝐽
431stcelcls 21074 . . . . . . . . . 10 ((𝐽 ∈ 1st𝜔 ∧ ( 𝐽𝑥) ⊆ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
52, 4mpan2 703 . . . . . . . . 9 (𝐽 ∈ 1st𝜔 → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
65adantr 480 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
71adantr 480 . . . . . . . . . . . . . 14 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 ∈ Top)
87adantr 480 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ Top)
93toptopon 20548 . . . . . . . . . . . . 13 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 207 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 simprr 792 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡𝐽)𝑦)
12 lmcl 20911 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 𝐽)
1310, 11, 12syl2anc 691 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 𝐽)
14 nnuz 11599 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
15 vex 3176 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1615rnex 6992 . . . . . . . . . . . . . . . 16 ran 𝑓 ∈ V
17 snex 4835 . . . . . . . . . . . . . . . 16 {𝑦} ∈ V
1816, 17unex 6854 . . . . . . . . . . . . . . 15 (ran 𝑓 ∪ {𝑦}) ∈ V
19 resttop 20774 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
208, 18, 19sylancl 693 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
21 eqid 2610 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2221toptopon 20548 . . . . . . . . . . . . . 14 ((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
2320, 22sylib 207 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
24 1zzd 11285 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 1 ∈ ℤ)
25 eqid 2610 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2618a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V)
27 ssun2 3739 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})
28 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2928snss 4259 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}))
3027, 29mpbir 220 . . . . . . . . . . . . . . . 16 𝑦 ∈ (ran 𝑓 ∪ {𝑦})
3130a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦}))
32 ffn 5958 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( 𝐽𝑥) → 𝑓 Fn ℕ)
3332ad2antrl 760 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓 Fn ℕ)
34 dffn3 5967 . . . . . . . . . . . . . . . . 17 (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓)
3533, 34sylib 207 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓)
36 ssun1 3738 . . . . . . . . . . . . . . . 16 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})
37 fss 5969 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3835, 36, 37sylancl 693 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3925, 14, 26, 8, 31, 24, 38lmss 20912 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑓(⇝𝑡𝐽)𝑦𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦))
4011, 39mpbid 221 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦)
4138ffvelrnda 6267 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (ran 𝑓 ∪ {𝑦}))
42 simprl 790 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶( 𝐽𝑥))
4342ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ( 𝐽𝑥))
4443eldifbd 3553 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ 𝑥)
4541, 44eldifd 3551 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
46 difin 3823 . . . . . . . . . . . . . . 15 ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)
47 frn 5966 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶( 𝐽𝑥) → ran 𝑓 ⊆ ( 𝐽𝑥))
4847ad2antrl 760 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 ⊆ ( 𝐽𝑥))
4948difss2d 3702 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 𝐽)
5013snssd 4281 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → {𝑦} ⊆ 𝐽)
5149, 50unssd 3751 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽)
523restuni 20776 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
538, 51, 52syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
5453difeq1d 3689 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
5546, 54syl5eqr 2658 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
56 incom 3767 . . . . . . . . . . . . . . . 16 ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦}))
57 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽))
58 fss 5969 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶( 𝐽𝑥) ∧ ( 𝐽𝑥) ⊆ 𝐽) → 𝑓:ℕ⟶ 𝐽)
5942, 2, 58sylancl 693 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ 𝐽)
6010, 59, 111stckgenlem 21166 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp)
61 kgeni 21150 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6257, 60, 61syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6356, 62syl5eqel 2692 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6421opncld 20647 . . . . . . . . . . . . . . 15 (((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦}))) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6520, 63, 64syl2anc 691 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6655, 65eqeltrd 2688 . . . . . . . . . . . . 13 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6714, 23, 24, 40, 45, 66lmcld 20917 . . . . . . . . . . . 12 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
6867eldifbd 3553 . . . . . . . . . . 11 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ¬ 𝑦𝑥)
6913, 68eldifd 3551 . . . . . . . . . 10 (((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ( 𝐽𝑥))
7069ex 449 . . . . . . . . 9 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
7170exlimdv 1848 . . . . . . . 8 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
726, 71sylbid 229 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) → 𝑦 ∈ ( 𝐽𝑥)))
7372ssrdv 3574 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥))
743iscld4 20679 . . . . . . 7 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ⊆ 𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
757, 2, 74sylancl 693 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
7673, 75mpbird 246 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
77 elssuni 4403 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
7877adantl 481 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 (𝑘Gen‘𝐽))
793kgenuni 21152 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
807, 79syl 17 . . . . . . 7 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 = (𝑘Gen‘𝐽))
8178, 80sseqtr4d 3605 . . . . . 6 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 𝐽)
823isopn2 20646 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
837, 81, 82syl2anc 691 . . . . 5 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
8476, 83mpbird 246 . . . 4 ((𝐽 ∈ 1st𝜔 ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥𝐽)
8584ex 449 . . 3 (𝐽 ∈ 1st𝜔 → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
8685ssrdv 3574 . 2 (𝐽 ∈ 1st𝜔 → (𝑘Gen‘𝐽) ⊆ 𝐽)
87 iskgen2 21161 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
881, 86, 87sylanbrc 695 1 (𝐽 ∈ 1st𝜔 → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  {csn 4125   cuni 4372   class class class wbr 4583  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  1c1 9816  cn 10897  t crest 15904  Topctop 20517  TopOnctopon 20518  Clsdccld 20630  clsccl 20632  𝑡clm 20840  Compccmp 20999  1st𝜔c1stc 21050  𝑘Genckgen 21146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-lm 20843  df-cmp 21000  df-1stc 21052  df-kgen 21147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator