MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmss Structured version   Visualization version   GIF version

Theorem lmss 20912
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1 𝐾 = (𝐽t 𝑌)
lmss.2 𝑍 = (ℤ𝑀)
lmss.3 (𝜑𝑌𝑉)
lmss.4 (𝜑𝐽 ∈ Top)
lmss.5 (𝜑𝑃𝑌)
lmss.6 (𝜑𝑀 ∈ ℤ)
lmss.7 (𝜑𝐹:𝑍𝑌)
Assertion
Ref Expression
lmss (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))

Proof of Theorem lmss
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6 (𝜑𝐽 ∈ Top)
2 eqid 2610 . . . . . . 7 𝐽 = 𝐽
32toptopon 20548 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
41, 3sylib 207 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
5 lmcl 20911 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
64, 5sylan 487 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
7 lmfss 20910 . . . . . . 7 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
84, 7sylan 487 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝐽))
9 rnss 5275 . . . . . 6 (𝐹 ⊆ (ℂ × 𝐽) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
108, 9syl 17 . . . . 5 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 ⊆ ran (ℂ × 𝐽))
11 rnxpss 5485 . . . . 5 ran (ℂ × 𝐽) ⊆ 𝐽
1210, 11syl6ss 3580 . . . 4 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → ran 𝐹 𝐽)
136, 12jca 553 . . 3 ((𝜑𝐹(⇝𝑡𝐽)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
1413ex 449 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
15 inss2 3796 . . . . 5 (𝑌 𝐽) ⊆ 𝐽
16 lmss.1 . . . . . . 7 𝐾 = (𝐽t 𝑌)
17 lmss.3 . . . . . . . 8 (𝜑𝑌𝑉)
18 resttopon2 20782 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑌𝑉) → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
194, 17, 18syl2anc 691 . . . . . . 7 (𝜑 → (𝐽t 𝑌) ∈ (TopOn‘(𝑌 𝐽)))
2016, 19syl5eqel 2692 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘(𝑌 𝐽)))
21 lmcl 20911 . . . . . 6 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2220, 21sylan 487 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 ∈ (𝑌 𝐽))
2315, 22sseldi 3566 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝑃 𝐽)
24 lmfss 20910 . . . . . . . 8 ((𝐾 ∈ (TopOn‘(𝑌 𝐽)) ∧ 𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
2520, 24sylan 487 . . . . . . 7 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 𝐽)))
26 rnss 5275 . . . . . . 7 (𝐹 ⊆ (ℂ × (𝑌 𝐽)) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
2725, 26syl 17 . . . . . 6 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ ran (ℂ × (𝑌 𝐽)))
28 rnxpss 5485 . . . . . 6 ran (ℂ × (𝑌 𝐽)) ⊆ (𝑌 𝐽)
2927, 28syl6ss 3580 . . . . 5 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 ⊆ (𝑌 𝐽))
3029, 15syl6ss 3580 . . . 4 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → ran 𝐹 𝐽)
3123, 30jca 553 . . 3 ((𝜑𝐹(⇝𝑡𝐾)𝑃) → (𝑃 𝐽 ∧ ran 𝐹 𝐽))
3231ex 449 . 2 (𝜑 → (𝐹(⇝𝑡𝐾)𝑃 → (𝑃 𝐽 ∧ ran 𝐹 𝐽)))
33 simprl 790 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 𝐽)
34 lmss.5 . . . . . . . 8 (𝜑𝑃𝑌)
3534adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃𝑌)
3635, 33elind 3760 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑃 ∈ (𝑌 𝐽))
3733, 362thd 254 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃 𝐽𝑃 ∈ (𝑌 𝐽)))
3816eleq2i 2680 . . . . . . . . 9 (𝑣𝐾𝑣 ∈ (𝐽t 𝑌))
391adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ Top)
4017adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑌𝑉)
41 elrest 15911 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4239, 40, 41syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑣 ∈ (𝐽t 𝑌) ↔ ∃𝑢𝐽 𝑣 = (𝑢𝑌)))
4342biimpa 500 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣 ∈ (𝐽t 𝑌)) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
4438, 43sylan2b 491 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → ∃𝑢𝐽 𝑣 = (𝑢𝑌))
45 r19.29r 3055 . . . . . . . . . 10 ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → ∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
4635biantrud 527 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢 ↔ (𝑃𝑢𝑃𝑌)))
47 elin 3758 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (𝑢𝑌) ↔ (𝑃𝑢𝑃𝑌))
4846, 47syl6bbr 277 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝑃𝑢𝑃 ∈ (𝑢𝑌)))
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (ℤ𝑀)
5049uztrn2 11581 . . . . . . . . . . . . . . . . . . . 20 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹:𝑍𝑌)
5251adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍𝑌)
5352ffvelrnda 6267 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑌)
5453biantrud 527 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌)))
55 elin 3758 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ (𝑢𝑌) ↔ ((𝐹𝑘) ∈ 𝑢 ∧ (𝐹𝑘) ∈ 𝑌))
5654, 55syl6bbr 277 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5750, 56sylan2 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5857anassrs 678 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
5958ralbidva 2968 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6059rexbidva 3031 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6148, 60imbi12d 333 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6261adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6362biimpd 218 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
64 eleq2 2677 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (𝑃𝑣𝑃 ∈ (𝑢𝑌)))
65 eleq2 2677 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑢𝑌) → ((𝐹𝑘) ∈ 𝑣 ↔ (𝐹𝑘) ∈ (𝑢𝑌)))
6665rexralbidv 3040 . . . . . . . . . . . . . . 15 (𝑣 = (𝑢𝑌) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))
6764, 66imbi12d 333 . . . . . . . . . . . . . 14 (𝑣 = (𝑢𝑌) → ((𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) ↔ (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
6867imbi2d 329 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑌) → (((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)) ↔ ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌)))))
6963, 68syl5ibrcom 236 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑣 = (𝑢𝑌) → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
7069impd 446 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → ((𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7170rexlimdva 3013 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∃𝑢𝐽 (𝑣 = (𝑢𝑌) ∧ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7245, 71syl5 33 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((∃𝑢𝐽 𝑣 = (𝑢𝑌) ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7372expdimp 452 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ ∃𝑢𝐽 𝑣 = (𝑢𝑌)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7444, 73syldan 486 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑣𝐾) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7574ralrimdva 2952 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
7639adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝐽 ∈ Top)
7740adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑌𝑉)
78 simpr 476 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → 𝑢𝐽)
79 elrestr 15912 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑌𝑉𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8076, 77, 78, 79syl3anc 1318 . . . . . . . . . 10 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ (𝐽t 𝑌))
8180, 16syl6eleqr 2699 . . . . . . . . 9 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (𝑢𝑌) ∈ 𝐾)
8267rspcv 3278 . . . . . . . . 9 ((𝑢𝑌) ∈ 𝐾 → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8381, 82syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ (𝑢𝑌))))
8483, 62sylibrd 248 . . . . . . 7 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑢𝐽) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8584ralrimdva 2952 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
8675, 85impbid 201 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ↔ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣)))
8737, 86anbi12d 743 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ((𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
8839, 3sylib 207 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐽 ∈ (TopOn‘ 𝐽))
89 lmss.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
9089adantr 480 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝑀 ∈ ℤ)
91 ffn 5958 . . . . . . 7 (𝐹:𝑍𝑌𝐹 Fn 𝑍)
9252, 91syl 17 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹 Fn 𝑍)
93 simprr 792 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 𝐽)
94 df-f 5808 . . . . . 6 (𝐹:𝑍 𝐽 ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 𝐽))
9592, 93, 94sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍 𝐽)
96 eqidd 2611 . . . . 5 (((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
9788, 49, 90, 95, 96lmbrf 20874 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃 𝐽 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))))
9820adantr 480 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐾 ∈ (TopOn‘(𝑌 𝐽)))
99 frn 5966 . . . . . . . 8 (𝐹:𝑍𝑌 → ran 𝐹𝑌)
10052, 99syl 17 . . . . . . 7 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹𝑌)
101100, 93ssind 3799 . . . . . 6 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → ran 𝐹 ⊆ (𝑌 𝐽))
102 df-f 5808 . . . . . 6 (𝐹:𝑍⟶(𝑌 𝐽) ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ (𝑌 𝐽)))
10392, 101, 102sylanbrc 695 . . . . 5 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → 𝐹:𝑍⟶(𝑌 𝐽))
10498, 49, 90, 103, 96lmbrf 20874 . . . 4 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐾)𝑃 ↔ (𝑃 ∈ (𝑌 𝐽) ∧ ∀𝑣𝐾 (𝑃𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑣))))
10587, 97, 1043bitr4d 299 . . 3 ((𝜑 ∧ (𝑃 𝐽 ∧ ran 𝐹 𝐽)) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
106105ex 449 . 2 (𝜑 → ((𝑃 𝐽 ∧ ran 𝐹 𝐽) → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃)))
10714, 32, 106pm5.21ndd 368 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃𝐹(⇝𝑡𝐾)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540   cuni 4372   class class class wbr 4583   × cxp 5036  ran crn 5039   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cz 11254  cuz 11563  t crest 15904  Topctop 20517  TopOnctopon 20518  𝑡clm 20840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-neg 10148  df-z 11255  df-uz 11564  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-lm 20843
This theorem is referenced by:  1stckgen  21167  minvecolem4b  27118  minvecolem4  27120  hhsscms  27520  lmlim  29321  climreeq  38680
  Copyright terms: Public domain W3C validator