Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minvecolem4b | Structured version Visualization version GIF version |
Description: Lemma for minveco 27124. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4b | ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
2 | phnv 27053 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
4 | minveco.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
5 | elin 3758 | . . . . 5 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
6 | 4, 5 | sylib 207 | . . . 4 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
7 | 6 | simpld 474 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
8 | minveco.x | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
9 | minveco.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
10 | eqid 2610 | . . . 4 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
11 | 8, 9, 10 | sspba 26966 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
12 | 3, 7, 11 | syl2anc 691 | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
13 | minveco.d | . . . . . . . 8 ⊢ 𝐷 = (IndMet‘𝑈) | |
14 | 8, 13 | imsxmet 26931 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
15 | 3, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
16 | minveco.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
17 | 16 | methaus 22135 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
18 | 15, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Haus) |
19 | lmfun 20995 | . . . . 5 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun (⇝𝑡‘𝐽)) |
21 | minveco.m | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
22 | minveco.n | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
23 | minveco.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
24 | minveco.r | . . . . . 6 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
25 | minveco.s | . . . . . 6 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
26 | minveco.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
27 | minveco.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
28 | 8, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27 | minvecolem4a 27117 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
29 | eqid 2610 | . . . . . . 7 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
30 | nnuz 11599 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
31 | fvex 6113 | . . . . . . . . 9 ⊢ (BaseSet‘𝑊) ∈ V | |
32 | 9, 31 | eqeltri 2684 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
33 | 32 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
34 | 16 | mopntop 22055 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
35 | 15, 34 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
36 | xmetres2 21976 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) | |
37 | 15, 12, 36 | syl2anc 691 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
38 | eqid 2610 | . . . . . . . . . 10 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
39 | 38 | mopntopon 22054 | . . . . . . . . 9 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
40 | 37, 39 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
41 | lmcl 20911 | . . . . . . . 8 ⊢ (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) | |
42 | 40, 28, 41 | syl2anc 691 | . . . . . . 7 ⊢ (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
43 | 1zzd 11285 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
44 | 29, 30, 33, 35, 42, 43, 26 | lmss 20912 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
45 | eqid 2610 | . . . . . . . . . 10 ⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) | |
46 | 45, 16, 38 | metrest 22139 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
47 | 15, 12, 46 | syl2anc 691 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
48 | 47 | fveq2d 6107 | . . . . . . 7 ⊢ (𝜑 → (⇝𝑡‘(𝐽 ↾t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
49 | 48 | breqd 4594 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
50 | 44, 49 | bitrd 267 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
51 | 28, 50 | mpbird 246 | . . . 4 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
52 | funbrfv 6144 | . . . 4 ⊢ (Fun (⇝𝑡‘𝐽) → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡‘𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
53 | 20, 51, 52 | sylc 63 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
54 | 53, 42 | eqeltrd 2688 | . 2 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌) |
55 | 12, 54 | sseldd 3569 | 1 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 class class class wbr 4583 ↦ cmpt 4643 × cxp 5036 ran crn 5039 ↾ cres 5040 Fun wfun 5798 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 infcinf 8230 ℝcr 9814 1c1 9816 + caddc 9818 < clt 9953 ≤ cle 9954 / cdiv 10563 ℕcn 10897 2c2 10947 ↑cexp 12722 ↾t crest 15904 ∞Metcxmt 19552 MetOpencmopn 19557 Topctop 20517 TopOnctopon 20518 ⇝𝑡clm 20840 Hauscha 20922 NrmCVeccnv 26823 BaseSetcba 26825 −𝑣 cnsb 26828 normCVcnmcv 26829 IndMetcims 26830 SubSpcss 26960 CPreHilOLDccphlo 27051 CBanccbn 27102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fi 8200 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-icc 12053 df-fl 12455 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-rest 15906 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-top 20521 df-bases 20522 df-topon 20523 df-ntr 20634 df-nei 20712 df-lm 20843 df-haus 20929 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-cfil 22861 df-cau 22862 df-cmet 22863 df-grpo 26731 df-gid 26732 df-ginv 26733 df-gdiv 26734 df-ablo 26783 df-vc 26798 df-nv 26831 df-va 26834 df-ba 26835 df-sm 26836 df-0v 26837 df-vs 26838 df-nmcv 26839 df-ims 26840 df-ssp 26961 df-ph 27052 df-cbn 27103 |
This theorem is referenced by: minvecolem4 27120 |
Copyright terms: Public domain | W3C validator |