MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmss Structured version   Unicode version

Theorem lmss 18902
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1  |-  K  =  ( Jt  Y )
lmss.2  |-  Z  =  ( ZZ>= `  M )
lmss.3  |-  ( ph  ->  Y  e.  V )
lmss.4  |-  ( ph  ->  J  e.  Top )
lmss.5  |-  ( ph  ->  P  e.  Y )
lmss.6  |-  ( ph  ->  M  e.  ZZ )
lmss.7  |-  ( ph  ->  F : Z --> Y )
Assertion
Ref Expression
lmss  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )

Proof of Theorem lmss
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6  |-  ( ph  ->  J  e.  Top )
2 eqid 2443 . . . . . . 7  |-  U. J  =  U. J
32toptopon 18538 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
41, 3sylib 196 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
5 lmcl 18901 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
64, 5sylan 471 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  P  e.  U. J )
7 lmfss 18900 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  U. J ) )
84, 7sylan 471 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  F  C_  ( CC  X.  U. J ) )
9 rnss 5068 . . . . . 6  |-  ( F 
C_  ( CC  X.  U. J )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
108, 9syl 16 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
11 rnxpss 5270 . . . . 5  |-  ran  ( CC  X.  U. J ) 
C_  U. J
1210, 11syl6ss 3368 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  U. J )
136, 12jca 532 . . 3  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
1413ex 434 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
15 inss2 3571 . . . . 5  |-  ( Y  i^i  U. J ) 
C_  U. J
16 lmss.1 . . . . . . 7  |-  K  =  ( Jt  Y )
17 lmss.3 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
18 resttopon2 18772 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  V )  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
194, 17, 18syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
2016, 19syl5eqel 2527 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  ( Y  i^i  U. J
) ) )
21 lmcl 18901 . . . . . 6  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  P  e.  ( Y  i^i  U. J ) )
2220, 21sylan 471 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  ( Y  i^i  U. J ) )
2315, 22sseldi 3354 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  U. J )
24 lmfss 18900 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J
) ) )
2520, 24sylan 471 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J ) ) )
26 rnss 5068 . . . . . . 7  |-  ( F 
C_  ( CC  X.  ( Y  i^i  U. J
) )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
2725, 26syl 16 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
28 rnxpss 5270 . . . . . 6  |-  ran  ( CC  X.  ( Y  i^i  U. J ) )  C_  ( Y  i^i  U. J
)
2927, 28syl6ss 3368 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ( Y  i^i  U. J ) )
3029, 15syl6ss 3368 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  U. J )
3123, 30jca 532 . . 3  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
3231ex 434 . 2  |-  ( ph  ->  ( F ( ~~> t `  K ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
33 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  U. J )
34 lmss.5 . . . . . . . 8  |-  ( ph  ->  P  e.  Y )
3534adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  Y
)
3635, 33elind 3540 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  ( Y  i^i  U. J
) )
3733, 362thd 240 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e. 
U. J  <->  P  e.  ( Y  i^i  U. J
) ) )
3816eleq2i 2507 . . . . . . . . 9  |-  ( v  e.  K  <->  v  e.  ( Jt  Y ) )
391adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  Top )
4017adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  Y  e.  V
)
41 elrest 14366 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4239, 40, 41syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4342biimpa 484 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  ( Jt  Y ) )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
4438, 43sylan2b 475 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
45 r19.29r 2858 . . . . . . . . . 10  |-  ( ( E. u  e.  J  v  =  ( u  i^i  Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  ->  E. u  e.  J  ( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) ) )
4635biantrud 507 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  ( P  e.  u  /\  P  e.  Y ) ) )
47 elin 3539 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( u  i^i 
Y )  <->  ( P  e.  u  /\  P  e.  Y ) )
4846, 47syl6bbr 263 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  P  e.  (
u  i^i  Y )
) )
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  =  ( ZZ>= `  M )
5049uztrn2 10878 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  F : Z --> Y )
5251adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> Y )
5352ffvelrnda 5843 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  e.  Y )
5453biantrud 507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) ) )
55 elin 3539 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  k )  e.  ( u  i^i 
Y )  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) )
5654, 55syl6bbr 263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5750, 56sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5857anassrs 648 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J
) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k )  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5958ralbidva 2731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6059rexbidva 2732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6148, 60imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <-> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
6261adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6362biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
64 eleq2 2504 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( P  e.  v  <->  P  e.  ( u  i^i  Y ) ) )
65 eleq2 2504 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( u  i^i 
Y )  ->  (
( F `  k
)  e.  v  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
6665rexralbidv 2759 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6764, 66imbi12d 320 . . . . . . . . . . . . . 14  |-  ( v  =  ( u  i^i 
Y )  ->  (
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6867imbi2d 316 . . . . . . . . . . . . 13  |-  ( v  =  ( u  i^i 
Y )  ->  (
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) )  <->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) ) )
6963, 68syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
v  =  ( u  i^i  Y )  -> 
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
7069impd 431 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) )
7170rexlimdva 2841 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. u  e.  J  ( v  =  ( u  i^i 
Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7245, 71syl5 32 . . . . . . . . 9  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( E. u  e.  J  v  =  ( u  i^i 
Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7372expdimp 437 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  E. u  e.  J  v  =  ( u  i^i  Y ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) )
7444, 73syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7574ralrimdva 2806 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7639adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  J  e.  Top )
7740adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  Y  e.  V )
78 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  u  e.  J )
79 elrestr 14367 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V  /\  u  e.  J )  ->  ( u  i^i  Y
)  e.  ( Jt  Y ) )
8076, 77, 78, 79syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  ( Jt  Y ) )
8180, 16syl6eleqr 2534 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  K )
8267rspcv 3069 . . . . . . . . 9  |-  ( ( u  i^i  Y )  e.  K  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8381, 82syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8483, 62sylibrd 234 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8584ralrimdva 2806 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8675, 85impbid 191 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
8737, 86anbi12d 710 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )  <-> 
( P  e.  ( Y  i^i  U. J
)  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
8839, 3sylib 196 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  (TopOn `  U. J ) )
89 lmss.6 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
9089adantr 465 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  M  e.  ZZ )
91 ffn 5559 . . . . . . 7  |-  ( F : Z --> Y  ->  F  Fn  Z )
9252, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F  Fn  Z
)
93 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  U. J
)
94 df-f 5422 . . . . . 6  |-  ( F : Z --> U. J  <->  ( F  Fn  Z  /\  ran  F  C_  U. J ) )
9592, 93, 94sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> U. J )
96 eqidd 2444 . . . . 5  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9788, 49, 90, 95, 96lmbrf 18864 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  ( P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) ) ) )
9820adantr 465 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  K  e.  (TopOn `  ( Y  i^i  U. J ) ) )
99 frn 5565 . . . . . . . 8  |-  ( F : Z --> Y  ->  ran  F  C_  Y )
10052, 99syl 16 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  Y
)
101100, 93ssind 3574 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  ( Y  i^i  U. J ) )
102 df-f 5422 . . . . . 6  |-  ( F : Z --> ( Y  i^i  U. J )  <-> 
( F  Fn  Z  /\  ran  F  C_  ( Y  i^i  U. J ) ) )
10392, 101, 102sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> ( Y  i^i  U. J
) )
10498, 49, 90, 103, 96lmbrf 18864 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  K ) P  <->  ( P  e.  ( Y  i^i  U. J )  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) ) )
10587, 97, 1043bitr4d 285 . . 3  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
106105ex 434 . 2  |-  ( ph  ->  ( ( P  e. 
U. J  /\  ran  F 
C_  U. J )  -> 
( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) ) )
10714, 32, 106pm5.21ndd 354 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   E.wrex 2716    i^i cin 3327    C_ wss 3328   U.cuni 4091   class class class wbr 4292    X. cxp 4838   ran crn 4841    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280   ZZcz 10646   ZZ>=cuz 10861   ↾t crest 14359   Topctop 18498  TopOnctopon 18499   ~~> tclm 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-pre-lttri 9356  ax-pre-lttrn 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-oadd 6924  df-er 7101  df-pm 7217  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fi 7661  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-neg 9598  df-z 10647  df-uz 10862  df-rest 14361  df-topgen 14382  df-top 18503  df-bases 18505  df-topon 18506  df-lm 18833
This theorem is referenced by:  1stckgen  19127  minvecolem4b  24279  minvecolem4  24281  hhsscms  24680  lmlim  26377  climreeq  29786
  Copyright terms: Public domain W3C validator