MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmss Structured version   Unicode version

Theorem lmss 20090
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1  |-  K  =  ( Jt  Y )
lmss.2  |-  Z  =  ( ZZ>= `  M )
lmss.3  |-  ( ph  ->  Y  e.  V )
lmss.4  |-  ( ph  ->  J  e.  Top )
lmss.5  |-  ( ph  ->  P  e.  Y )
lmss.6  |-  ( ph  ->  M  e.  ZZ )
lmss.7  |-  ( ph  ->  F : Z --> Y )
Assertion
Ref Expression
lmss  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )

Proof of Theorem lmss
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6  |-  ( ph  ->  J  e.  Top )
2 eqid 2402 . . . . . . 7  |-  U. J  =  U. J
32toptopon 19724 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
41, 3sylib 196 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
5 lmcl 20089 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
64, 5sylan 469 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  P  e.  U. J )
7 lmfss 20088 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  U. J ) )
84, 7sylan 469 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  F  C_  ( CC  X.  U. J ) )
9 rnss 5051 . . . . . 6  |-  ( F 
C_  ( CC  X.  U. J )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
108, 9syl 17 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
11 rnxpss 5256 . . . . 5  |-  ran  ( CC  X.  U. J ) 
C_  U. J
1210, 11syl6ss 3453 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  U. J )
136, 12jca 530 . . 3  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
1413ex 432 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
15 inss2 3659 . . . . 5  |-  ( Y  i^i  U. J ) 
C_  U. J
16 lmss.1 . . . . . . 7  |-  K  =  ( Jt  Y )
17 lmss.3 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
18 resttopon2 19960 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  V )  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
194, 17, 18syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
2016, 19syl5eqel 2494 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  ( Y  i^i  U. J
) ) )
21 lmcl 20089 . . . . . 6  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  P  e.  ( Y  i^i  U. J ) )
2220, 21sylan 469 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  ( Y  i^i  U. J ) )
2315, 22sseldi 3439 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  U. J )
24 lmfss 20088 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J
) ) )
2520, 24sylan 469 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J ) ) )
26 rnss 5051 . . . . . . 7  |-  ( F 
C_  ( CC  X.  ( Y  i^i  U. J
) )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
2725, 26syl 17 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
28 rnxpss 5256 . . . . . 6  |-  ran  ( CC  X.  ( Y  i^i  U. J ) )  C_  ( Y  i^i  U. J
)
2927, 28syl6ss 3453 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ( Y  i^i  U. J ) )
3029, 15syl6ss 3453 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  U. J )
3123, 30jca 530 . . 3  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
3231ex 432 . 2  |-  ( ph  ->  ( F ( ~~> t `  K ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
33 simprl 756 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  U. J )
34 lmss.5 . . . . . . . 8  |-  ( ph  ->  P  e.  Y )
3534adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  Y
)
3635, 33elind 3626 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  ( Y  i^i  U. J
) )
3733, 362thd 240 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e. 
U. J  <->  P  e.  ( Y  i^i  U. J
) ) )
3816eleq2i 2480 . . . . . . . . 9  |-  ( v  e.  K  <->  v  e.  ( Jt  Y ) )
391adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  Top )
4017adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  Y  e.  V
)
41 elrest 15040 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4239, 40, 41syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4342biimpa 482 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  ( Jt  Y ) )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
4438, 43sylan2b 473 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
45 r19.29r 2942 . . . . . . . . . 10  |-  ( ( E. u  e.  J  v  =  ( u  i^i  Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  ->  E. u  e.  J  ( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) ) )
4635biantrud 505 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  ( P  e.  u  /\  P  e.  Y ) ) )
47 elin 3625 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( u  i^i 
Y )  <->  ( P  e.  u  /\  P  e.  Y ) )
4846, 47syl6bbr 263 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  P  e.  (
u  i^i  Y )
) )
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  =  ( ZZ>= `  M )
5049uztrn2 11143 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  F : Z --> Y )
5251adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> Y )
5352ffvelrnda 6008 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  e.  Y )
5453biantrud 505 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) ) )
55 elin 3625 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  k )  e.  ( u  i^i 
Y )  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) )
5654, 55syl6bbr 263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5750, 56sylan2 472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5857anassrs 646 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J
) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k )  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5958ralbidva 2839 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6059rexbidva 2914 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6148, 60imbi12d 318 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <-> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
6261adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6362biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
64 eleq2 2475 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( P  e.  v  <->  P  e.  ( u  i^i  Y ) ) )
65 eleq2 2475 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( u  i^i 
Y )  ->  (
( F `  k
)  e.  v  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
6665rexralbidv 2925 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6764, 66imbi12d 318 . . . . . . . . . . . . . 14  |-  ( v  =  ( u  i^i 
Y )  ->  (
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6867imbi2d 314 . . . . . . . . . . . . 13  |-  ( v  =  ( u  i^i 
Y )  ->  (
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) )  <->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) ) )
6963, 68syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
v  =  ( u  i^i  Y )  -> 
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
7069impd 429 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) )
7170rexlimdva 2895 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. u  e.  J  ( v  =  ( u  i^i 
Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7245, 71syl5 30 . . . . . . . . 9  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( E. u  e.  J  v  =  ( u  i^i 
Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7372expdimp 435 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  E. u  e.  J  v  =  ( u  i^i  Y ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) )
7444, 73syldan 468 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7574ralrimdva 2821 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7639adantr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  J  e.  Top )
7740adantr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  Y  e.  V )
78 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  u  e.  J )
79 elrestr 15041 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V  /\  u  e.  J )  ->  ( u  i^i  Y
)  e.  ( Jt  Y ) )
8076, 77, 78, 79syl3anc 1230 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  ( Jt  Y ) )
8180, 16syl6eleqr 2501 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  K )
8267rspcv 3155 . . . . . . . . 9  |-  ( ( u  i^i  Y )  e.  K  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8381, 82syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8483, 62sylibrd 234 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8584ralrimdva 2821 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8675, 85impbid 191 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
8737, 86anbi12d 709 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )  <-> 
( P  e.  ( Y  i^i  U. J
)  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
8839, 3sylib 196 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  (TopOn `  U. J ) )
89 lmss.6 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
9089adantr 463 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  M  e.  ZZ )
91 ffn 5713 . . . . . . 7  |-  ( F : Z --> Y  ->  F  Fn  Z )
9252, 91syl 17 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F  Fn  Z
)
93 simprr 758 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  U. J
)
94 df-f 5572 . . . . . 6  |-  ( F : Z --> U. J  <->  ( F  Fn  Z  /\  ran  F  C_  U. J ) )
9592, 93, 94sylanbrc 662 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> U. J )
96 eqidd 2403 . . . . 5  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9788, 49, 90, 95, 96lmbrf 20052 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  ( P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) ) ) )
9820adantr 463 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  K  e.  (TopOn `  ( Y  i^i  U. J ) ) )
99 frn 5719 . . . . . . . 8  |-  ( F : Z --> Y  ->  ran  F  C_  Y )
10052, 99syl 17 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  Y
)
101100, 93ssind 3662 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  ( Y  i^i  U. J ) )
102 df-f 5572 . . . . . 6  |-  ( F : Z --> ( Y  i^i  U. J )  <-> 
( F  Fn  Z  /\  ran  F  C_  ( Y  i^i  U. J ) ) )
10392, 101, 102sylanbrc 662 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> ( Y  i^i  U. J
) )
10498, 49, 90, 103, 96lmbrf 20052 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  K ) P  <->  ( P  e.  ( Y  i^i  U. J )  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) ) )
10587, 97, 1043bitr4d 285 . . 3  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
106105ex 432 . 2  |-  ( ph  ->  ( ( P  e. 
U. J  /\  ran  F 
C_  U. J )  -> 
( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) ) )
10714, 32, 106pm5.21ndd 352 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754    i^i cin 3412    C_ wss 3413   U.cuni 4190   class class class wbr 4394    X. cxp 4820   ran crn 4823    Fn wfn 5563   -->wf 5564   ` cfv 5568  (class class class)co 6277   CCcc 9519   ZZcz 10904   ZZ>=cuz 11126   ↾t crest 15033   Topctop 19684  TopOnctopon 19685   ~~> tclm 20018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-pre-lttri 9595  ax-pre-lttrn 9596
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-oadd 7170  df-er 7347  df-pm 7459  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fi 7904  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-neg 9843  df-z 10905  df-uz 11127  df-rest 15035  df-topgen 15056  df-top 19689  df-bases 19691  df-topon 19692  df-lm 20021
This theorem is referenced by:  1stckgen  20345  minvecolem4b  26194  minvecolem4  26196  hhsscms  26595  lmlim  28368  climreeq  36968
  Copyright terms: Public domain W3C validator