MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmss Structured version   Unicode version

Theorem lmss 19558
Description: Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
Hypotheses
Ref Expression
lmss.1  |-  K  =  ( Jt  Y )
lmss.2  |-  Z  =  ( ZZ>= `  M )
lmss.3  |-  ( ph  ->  Y  e.  V )
lmss.4  |-  ( ph  ->  J  e.  Top )
lmss.5  |-  ( ph  ->  P  e.  Y )
lmss.6  |-  ( ph  ->  M  e.  ZZ )
lmss.7  |-  ( ph  ->  F : Z --> Y )
Assertion
Ref Expression
lmss  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )

Proof of Theorem lmss
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmss.4 . . . . . 6  |-  ( ph  ->  J  e.  Top )
2 eqid 2460 . . . . . . 7  |-  U. J  =  U. J
32toptopon 19194 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
41, 3sylib 196 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
5 lmcl 19557 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  P  e.  U. J )
64, 5sylan 471 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  P  e.  U. J )
7 lmfss 19556 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  F
( ~~> t `  J
) P )  ->  F  C_  ( CC  X.  U. J ) )
84, 7sylan 471 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  F  C_  ( CC  X.  U. J ) )
9 rnss 5222 . . . . . 6  |-  ( F 
C_  ( CC  X.  U. J )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
108, 9syl 16 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  ran  ( CC  X.  U. J ) )
11 rnxpss 5430 . . . . 5  |-  ran  ( CC  X.  U. J ) 
C_  U. J
1210, 11syl6ss 3509 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ran  F 
C_  U. J )
136, 12jca 532 . . 3  |-  ( (
ph  /\  F ( ~~> t `  J ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
1413ex 434 . 2  |-  ( ph  ->  ( F ( ~~> t `  J ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
15 inss2 3712 . . . . 5  |-  ( Y  i^i  U. J ) 
C_  U. J
16 lmss.1 . . . . . . 7  |-  K  =  ( Jt  Y )
17 lmss.3 . . . . . . . 8  |-  ( ph  ->  Y  e.  V )
18 resttopon2 19428 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  V )  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
194, 17, 18syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( Jt  Y )  e.  (TopOn `  ( Y  i^i  U. J ) ) )
2016, 19syl5eqel 2552 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  ( Y  i^i  U. J
) ) )
21 lmcl 19557 . . . . . 6  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  P  e.  ( Y  i^i  U. J ) )
2220, 21sylan 471 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  ( Y  i^i  U. J ) )
2315, 22sseldi 3495 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  P  e.  U. J )
24 lmfss 19556 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  ( Y  i^i  U. J
) )  /\  F
( ~~> t `  K
) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J
) ) )
2520, 24sylan 471 . . . . . . 7  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  F  C_  ( CC  X.  ( Y  i^i  U. J ) ) )
26 rnss 5222 . . . . . . 7  |-  ( F 
C_  ( CC  X.  ( Y  i^i  U. J
) )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
2725, 26syl 16 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ran  ( CC  X.  ( Y  i^i  U. J ) ) )
28 rnxpss 5430 . . . . . 6  |-  ran  ( CC  X.  ( Y  i^i  U. J ) )  C_  ( Y  i^i  U. J
)
2927, 28syl6ss 3509 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  ( Y  i^i  U. J ) )
3029, 15syl6ss 3509 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ran  F 
C_  U. J )
3123, 30jca 532 . . 3  |-  ( (
ph  /\  F ( ~~> t `  K ) P )  ->  ( P  e.  U. J  /\  ran  F  C_  U. J ) )
3231ex 434 . 2  |-  ( ph  ->  ( F ( ~~> t `  K ) P  -> 
( P  e.  U. J  /\  ran  F  C_  U. J ) ) )
33 simprl 755 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  U. J )
34 lmss.5 . . . . . . . 8  |-  ( ph  ->  P  e.  Y )
3534adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  Y
)
3635, 33elind 3681 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  P  e.  ( Y  i^i  U. J
) )
3733, 362thd 240 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e. 
U. J  <->  P  e.  ( Y  i^i  U. J
) ) )
3816eleq2i 2538 . . . . . . . . 9  |-  ( v  e.  K  <->  v  e.  ( Jt  Y ) )
391adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  Top )
4017adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  Y  e.  V
)
41 elrest 14672 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4239, 40, 41syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( v  e.  ( Jt  Y )  <->  E. u  e.  J  v  =  ( u  i^i  Y ) ) )
4342biimpa 484 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  ( Jt  Y ) )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
4438, 43sylan2b 475 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  E. u  e.  J  v  =  ( u  i^i  Y ) )
45 r19.29r 2991 . . . . . . . . . 10  |-  ( ( E. u  e.  J  v  =  ( u  i^i  Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  ->  E. u  e.  J  ( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) ) )
4635biantrud 507 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  ( P  e.  u  /\  P  e.  Y ) ) )
47 elin 3680 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( u  i^i 
Y )  <->  ( P  e.  u  /\  P  e.  Y ) )
4846, 47syl6bbr 263 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( P  e.  u  <->  P  e.  (
u  i^i  Y )
) )
49 lmss.2 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  =  ( ZZ>= `  M )
5049uztrn2 11088 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
51 lmss.7 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  F : Z --> Y )
5251adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> Y )
5352ffvelrnda 6012 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  e.  Y )
5453biantrud 507 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) ) )
55 elin 3680 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  k )  e.  ( u  i^i 
Y )  <->  ( ( F `  k )  e.  u  /\  ( F `  k )  e.  Y ) )
5654, 55syl6bbr 263 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5750, 56sylan2 474 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5857anassrs 648 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J
) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( F `  k )  e.  u  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
5958ralbidva 2893 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6059rexbidva 2963 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6148, 60imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <-> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
6261adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6362biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
64 eleq2 2533 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( P  e.  v  <->  P  e.  ( u  i^i  Y ) ) )
65 eleq2 2533 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( u  i^i 
Y )  ->  (
( F `  k
)  e.  v  <->  ( F `  k )  e.  ( u  i^i  Y ) ) )
6665rexralbidv 2974 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  i^i 
Y )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) )
6764, 66imbi12d 320 . . . . . . . . . . . . . 14  |-  ( v  =  ( u  i^i 
Y )  ->  (
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  <->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) )
6867imbi2d 316 . . . . . . . . . . . . 13  |-  ( v  =  ( u  i^i 
Y )  ->  (
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) )  <->  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  ( u  i^i  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  ( u  i^i  Y ) ) ) ) )
6963, 68syl5ibrcom 222 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
v  =  ( u  i^i  Y )  -> 
( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
7069impd 431 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
( v  =  ( u  i^i  Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) )
7170rexlimdva 2948 . . . . . . . . . 10  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( E. u  e.  J  ( v  =  ( u  i^i 
Y )  /\  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7245, 71syl5 32 . . . . . . . . 9  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( E. u  e.  J  v  =  ( u  i^i 
Y )  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7372expdimp 437 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  E. u  e.  J  v  =  ( u  i^i  Y ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  ->  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) )
7444, 73syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  v  e.  K )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  -> 
( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7574ralrimdva 2875 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  ->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
7639adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  J  e.  Top )
7740adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  Y  e.  V )
78 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  u  e.  J )
79 elrestr 14673 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  Y  e.  V  /\  u  e.  J )  ->  ( u  i^i  Y
)  e.  ( Jt  Y ) )
8076, 77, 78, 79syl3anc 1223 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  ( Jt  Y ) )
8180, 16syl6eleqr 2559 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  K )
8267rspcv 3203 . . . . . . . . 9  |-  ( ( u  i^i  Y )  e.  K  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8381, 82syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  ( u  i^i  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( u  i^i 
Y ) ) ) )
8483, 62sylibrd 234 . . . . . . 7  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  u  e.  J )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v )  -> 
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8584ralrimdva 2875 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
8675, 85impbid 191 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  <->  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  v ) ) )
8737, 86anbi12d 710 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( ( P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )  <-> 
( P  e.  ( Y  i^i  U. J
)  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  v ) ) ) )
8839, 3sylib 196 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  J  e.  (TopOn `  U. J ) )
89 lmss.6 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
9089adantr 465 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  M  e.  ZZ )
91 ffn 5722 . . . . . . 7  |-  ( F : Z --> Y  ->  F  Fn  Z )
9252, 91syl 16 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F  Fn  Z
)
93 simprr 756 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  U. J
)
94 df-f 5583 . . . . . 6  |-  ( F : Z --> U. J  <->  ( F  Fn  Z  /\  ran  F  C_  U. J ) )
9592, 93, 94sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> U. J )
96 eqidd 2461 . . . . 5  |-  ( ( ( ph  /\  ( P  e.  U. J  /\  ran  F  C_  U. J ) )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9788, 49, 90, 95, 96lmbrf 19520 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  ( P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u ) ) ) )
9820adantr 465 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  K  e.  (TopOn `  ( Y  i^i  U. J ) ) )
99 frn 5728 . . . . . . . 8  |-  ( F : Z --> Y  ->  ran  F  C_  Y )
10052, 99syl 16 . . . . . . 7  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  Y
)
101100, 93ssind 3715 . . . . . 6  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ran  F  C_  ( Y  i^i  U. J ) )
102 df-f 5583 . . . . . 6  |-  ( F : Z --> ( Y  i^i  U. J )  <-> 
( F  Fn  Z  /\  ran  F  C_  ( Y  i^i  U. J ) ) )
10392, 101, 102sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  F : Z --> ( Y  i^i  U. J
) )
10498, 49, 90, 103, 96lmbrf 19520 . . . 4  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  K ) P  <->  ( P  e.  ( Y  i^i  U. J )  /\  A. v  e.  K  ( P  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  v ) ) ) )
10587, 97, 1043bitr4d 285 . . 3  |-  ( (
ph  /\  ( P  e.  U. J  /\  ran  F 
C_  U. J ) )  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
106105ex 434 . 2  |-  ( ph  ->  ( ( P  e. 
U. J  /\  ran  F 
C_  U. J )  -> 
( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) ) )
10714, 32, 106pm5.21ndd 354 1  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808    i^i cin 3468    C_ wss 3469   U.cuni 4238   class class class wbr 4440    X. cxp 4990   ran crn 4993    Fn wfn 5574   -->wf 5575   ` cfv 5579  (class class class)co 6275   CCcc 9479   ZZcz 10853   ZZ>=cuz 11071   ↾t crest 14665   Topctop 19154  TopOnctopon 19155   ~~> tclm 19486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-pre-lttri 9555  ax-pre-lttrn 9556
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-oadd 7124  df-er 7301  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-neg 9797  df-z 10854  df-uz 11072  df-rest 14667  df-topgen 14688  df-top 19159  df-bases 19161  df-topon 19162  df-lm 19489
This theorem is referenced by:  1stckgen  19783  minvecolem4b  25456  minvecolem4  25458  hhsscms  25857  lmlim  27551  climreeq  31110
  Copyright terms: Public domain W3C validator