Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreeq Structured version   Visualization version   GIF version

Theorem climreeq 38680
 Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
Hypotheses
Ref Expression
climreeq.1 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
climreeq.2 𝑍 = (ℤ𝑀)
climreeq.3 (𝜑𝑀 ∈ ℤ)
climreeq.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climreeq (𝜑 → (𝐹𝑅𝐴𝐹𝐴))

Proof of Theorem climreeq
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 climreeq.3 . . . 4 (𝜑𝑀 ∈ ℤ)
2 climreeq.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
3 ax-resscn 9872 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
52, 4fssd 5970 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
6 eqid 2610 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7 climreeq.2 . . . . 5 𝑍 = (ℤ𝑀)
86, 7lmclimf 22910 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
91, 5, 8syl2anc 691 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
106tgioo2 22414 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11 reex 9906 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → ℝ ∈ V)
136cnfldtop 22397 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1413a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top)
15 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
161adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
172adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
1810, 7, 12, 14, 15, 16, 17lmss 20912 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
1918pm5.32da 671 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
20 simpr 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)
211adantr 480 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ)
229biimpa 500 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹𝐴)
232ffvelrnda 6267 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
2423adantlr 747 . . . . . . . 8 (((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
257, 21, 22, 24climrecl 14162 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ)
2625ex 449 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐴 ∈ ℝ))
2726ancrd 575 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)))
2820, 27impbid2 215 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))
29 simpr 476 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
30 retopon 22377 . . . . . . . . 9 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3130a1i 11 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
32 simpr 476 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
33 lmcl 20911 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3431, 32, 33syl2anc 691 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3534ex 449 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐴 ∈ ℝ))
3635ancrd 575 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
3729, 36impbid2 215 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
3819, 28, 373bitr3d 297 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
399, 38bitr3d 269 . 2 (𝜑 → (𝐹𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
40 climreeq.1 . . 3 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
4140breqi 4589 . 2 (𝐹𝑅𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
4239, 41syl6rbbr 278 1 (𝜑 → (𝐹𝑅𝐴𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540   class class class wbr 4583  ran crn 5039  ⟶wf 5800  ‘cfv 5804  ℂcc 9813  ℝcr 9814  ℤcz 11254  ℤ≥cuz 11563  (,)cioo 12046   ⇝ cli 14063  TopOpenctopn 15905  topGenctg 15921  ℂfldccnfld 19567  Topctop 20517  TopOnctopon 20518  ⇝𝑡clm 20840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-fz 12198  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-lm 20843  df-xms 21935  df-ms 21936 This theorem is referenced by:  stirlingr  38983
 Copyright terms: Public domain W3C validator