MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Unicode version

Theorem 1stckgen 19245
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen  |-  ( J  e.  1stc  ->  J  e. 
ran 𝑘Gen )

Proof of Theorem 1stckgen
Dummy variables  k 
f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 19165 . 2  |-  ( J  e.  1stc  ->  J  e. 
Top )
2 difss 3583 . . . . . . . . . 10  |-  ( U. J  \  x )  C_  U. J
3 eqid 2451 . . . . . . . . . . 11  |-  U. J  =  U. J
431stcelcls 19183 . . . . . . . . . 10  |-  ( ( J  e.  1stc  /\  ( U. J  \  x
)  C_  U. J )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  <->  E. f ( f : NN --> ( U. J  \  x )  /\  f
( ~~> t `  J
) y ) ) )
52, 4mpan2 671 . . . . . . . . 9  |-  ( J  e.  1stc  ->  ( y  e.  ( ( cls `  J ) `  ( U. J  \  x
) )  <->  E. f
( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) ) )
65adantr 465 . . . . . . . 8  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  <->  E. f ( f : NN --> ( U. J  \  x )  /\  f
( ~~> t `  J
) y ) ) )
71adantr 465 . . . . . . . . . . . . . 14  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  J  e.  Top )
87adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  J  e.  Top )
93toptopon 18656 . . . . . . . . . . . . 13  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
108, 9sylib 196 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  J  e.  (TopOn `  U. J ) )
11 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f ( ~~> t `  J )
y )
12 lmcl 19019 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  U. J )  /\  f
( ~~> t `  J
) y )  -> 
y  e.  U. J
)
1310, 11, 12syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  U. J )
14 nnuz 10999 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
15 vex 3073 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
1615rnex 6614 . . . . . . . . . . . . . . . 16  |-  ran  f  e.  _V
17 snex 4633 . . . . . . . . . . . . . . . 16  |-  { y }  e.  _V
1816, 17unex 6480 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { y } )  e.  _V
19 resttop 18882 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( ran  f  u.  {
y } )  e. 
_V )  ->  ( Jt  ( ran  f  u.  {
y } ) )  e.  Top )
208, 18, 19sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e. 
Top )
21 eqid 2451 . . . . . . . . . . . . . . 15  |-  U. ( Jt  ( ran  f  u.  {
y } ) )  =  U. ( Jt  ( ran  f  u.  {
y } ) )
2221toptopon 18656 . . . . . . . . . . . . . 14  |-  ( ( Jt  ( ran  f  u. 
{ y } ) )  e.  Top  <->  ( Jt  ( ran  f  u.  { y } ) )  e.  (TopOn `  U. ( Jt  ( ran  f  u.  {
y } ) ) ) )
2320, 22sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e.  (TopOn `  U. ( Jt  ( ran  f  u.  {
y } ) ) ) )
24 1zzd 10780 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  1  e.  ZZ )
25 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( Jt  ( ran  f  u.  {
y } ) )  =  ( Jt  ( ran  f  u.  { y } ) )
2618a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  e.  _V )
27 ssun2 3620 . . . . . . . . . . . . . . . . 17  |-  { y }  C_  ( ran  f  u.  { y } )
28 vex 3073 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
2928snss 4099 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ran  f  u.  { y } )  <->  { y }  C_  ( ran  f  u.  {
y } ) )
3027, 29mpbir 209 . . . . . . . . . . . . . . . 16  |-  y  e.  ( ran  f  u. 
{ y } )
3130a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( ran  f  u.  {
y } ) )
32 ffn 5659 . . . . . . . . . . . . . . . . . 18  |-  ( f : NN --> ( U. J  \  x )  -> 
f  Fn  NN )
3332ad2antrl 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f  Fn  NN )
34 dffn3 5666 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  NN  <->  f : NN
--> ran  f )
3533, 34sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ran  f )
36 ssun1 3619 . . . . . . . . . . . . . . . 16  |-  ran  f  C_  ( ran  f  u. 
{ y } )
37 fss 5667 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN --> ran  f  /\  ran  f  C_  ( ran  f  u.  { y } ) )  -> 
f : NN --> ( ran  f  u.  { y } ) )
3835, 36, 37sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ( ran  f  u. 
{ y } ) )
3925, 14, 26, 8, 31, 24, 38lmss 19020 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( f
( ~~> t `  J
) y  <->  f ( ~~> t `  ( Jt  ( ran  f  u.  { y } ) ) ) y ) )
4011, 39mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f ( ~~> t `  ( Jt  ( ran  f  u.  { y } ) ) ) y )
4138ffvelrnda 5944 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( ran  f  u.  { y } ) )
42 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ( U. J  \  x ) )
4342ffvelrnda 5944 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( U. J  \  x ) )
4443eldifbd 3441 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  -.  ( f `  k )  e.  x
)
4541, 44eldifd 3439 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( ( ran  f  u.  {
y } )  \  x ) )
46 difin 3687 . . . . . . . . . . . . . . 15  |-  ( ( ran  f  u.  {
y } )  \ 
( ( ran  f  u.  { y } )  i^i  x ) )  =  ( ( ran  f  u.  { y } )  \  x
)
47 frn 5665 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : NN --> ( U. J  \  x )  ->  ran  f  C_  ( U. J  \  x ) )
4847ad2antrl 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ran  f  C_  ( U. J  \  x
) )
4948difss2d 3586 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ran  f  C_  U. J )
5013snssd 4118 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  { y }  C_  U. J )
5149, 50unssd 3632 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  C_  U. J
)
523restuni 18884 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  ( ran  f  u.  {
y } )  C_  U. J )  ->  ( ran  f  u.  { y } )  =  U. ( Jt  ( ran  f  u.  { y } ) ) )
538, 51, 52syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  =  U. ( Jt  ( ran  f  u.  { y } ) ) )
5453difeq1d 3573 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  (
( ran  f  u.  { y } )  i^i  x ) )  =  ( U. ( Jt  ( ran  f  u.  {
y } ) ) 
\  ( ( ran  f  u.  { y } )  i^i  x
) ) )
5546, 54syl5eqr 2506 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  x
)  =  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) ) )
56 incom 3643 . . . . . . . . . . . . . . . 16  |-  ( ( ran  f  u.  {
y } )  i^i  x )  =  ( x  i^i  ( ran  f  u.  { y } ) )
57 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  x  e.  (𝑘Gen
`  J ) )
58 fss 5667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : NN --> ( U. J  \  x )  /\  ( U. J  \  x
)  C_  U. J )  ->  f : NN --> U. J )
5942, 2, 58sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> U. J )
6010, 59, 111stckgenlem 19244 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e. 
Comp )
61 kgeni 19228 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  (𝑘Gen `  J
)  /\  ( Jt  ( ran  f  u.  { y } ) )  e. 
Comp )  ->  (
x  i^i  ( ran  f  u.  { y } ) )  e.  ( Jt  ( ran  f  u.  { y } ) ) )
6257, 60, 61syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( x  i^i  ( ran  f  u. 
{ y } ) )  e.  ( Jt  ( ran  f  u.  {
y } ) ) )
6356, 62syl5eqel 2543 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  i^i  x
)  e.  ( Jt  ( ran  f  u.  {
y } ) ) )
6421opncld 18755 . . . . . . . . . . . . . . 15  |-  ( ( ( Jt  ( ran  f  u.  { y } ) )  e.  Top  /\  ( ( ran  f  u.  { y } )  i^i  x )  e.  ( Jt  ( ran  f  u.  { y } ) ) )  ->  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) )  e.  ( Clsd `  ( Jt  ( ran  f  u.  {
y } ) ) ) )
6520, 63, 64syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) )  e.  ( Clsd `  ( Jt  ( ran  f  u.  {
y } ) ) ) )
6655, 65eqeltrd 2539 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  x
)  e.  ( Clsd `  ( Jt  ( ran  f  u.  { y } ) ) ) )
6714, 23, 24, 40, 45, 66lmcld 19025 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( ( ran  f  u.  { y } ) 
\  x ) )
6867eldifbd 3441 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  -.  y  e.  x )
6913, 68eldifd 3439 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( U. J  \  x
) )
7069ex 434 . . . . . . . . 9  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y )  ->  y  e.  ( U. J  \  x
) ) )
7170exlimdv 1691 . . . . . . . 8  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( E. f
( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y )  ->  y  e.  ( U. J  \  x ) ) )
726, 71sylbid 215 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  ->  y  e.  ( U. J  \  x
) ) )
7372ssrdv 3462 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) )
743iscld4 18787 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( U. J  \  x
)  C_  U. J )  ->  ( ( U. J  \  x )  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) ) )
757, 2, 74sylancl 662 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( U. J  \  x )  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) ) )
7673, 75mpbird 232 . . . . 5  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
77 elssuni 4221 . . . . . . . 8  |-  ( x  e.  (𝑘Gen `  J )  ->  x  C_  U. (𝑘Gen `  J
) )
7877adantl 466 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  C_  U. (𝑘Gen `  J ) )
793kgenuni 19230 . . . . . . . 8  |-  ( J  e.  Top  ->  U. J  =  U. (𝑘Gen `  J ) )
807, 79syl 16 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  U. J  =  U. (𝑘Gen
`  J ) )
8178, 80sseqtr4d 3493 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  C_  U. J
)
823isopn2 18754 . . . . . 6  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( x  e.  J  <->  ( U. J  \  x )  e.  (
Clsd `  J )
) )
837, 81, 82syl2anc 661 . . . . 5  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( x  e.  J  <->  ( U. J  \  x )  e.  (
Clsd `  J )
) )
8476, 83mpbird 232 . . . 4  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  e.  J
)
8584ex 434 . . 3  |-  ( J  e.  1stc  ->  ( x  e.  (𝑘Gen `  J )  ->  x  e.  J )
)
8685ssrdv 3462 . 2  |-  ( J  e.  1stc  ->  (𝑘Gen `  J
)  C_  J )
87 iskgen2 19239 . 2  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)
881, 86, 87sylanbrc 664 1  |-  ( J  e.  1stc  ->  J  e. 
ran 𝑘Gen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   _Vcvv 3070    \ cdif 3425    u. cun 3426    i^i cin 3427    C_ wss 3428   {csn 3977   U.cuni 4191   class class class wbr 4392   ran crn 4941    Fn wfn 5513   -->wf 5514   ` cfv 5518  (class class class)co 6192   1c1 9386   NNcn 10425   ↾t crest 14463   Topctop 18616  TopOnctopon 18617   Clsdccld 18738   clsccl 18740   ~~> tclm 18948   Compccmp 19107   1stcc1stc 19159  𝑘Genckgen 19224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-inf2 7950  ax-cc 8707  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-iin 4274  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-2o 7023  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-fi 7764  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-rest 14465  df-topgen 14486  df-top 18621  df-bases 18623  df-topon 18624  df-cld 18741  df-ntr 18742  df-cls 18743  df-lm 18951  df-cmp 19108  df-1stc 19161  df-kgen 19225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator