MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   Unicode version

Theorem 1stckgen 20646
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen  |-  ( J  e.  1stc  ->  J  e. 
ran 𝑘Gen )

Proof of Theorem 1stckgen
Dummy variables  k 
f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 20535 . 2  |-  ( J  e.  1stc  ->  J  e. 
Top )
2 difss 3549 . . . . . . . . . 10  |-  ( U. J  \  x )  C_  U. J
3 eqid 2471 . . . . . . . . . . 11  |-  U. J  =  U. J
431stcelcls 20553 . . . . . . . . . 10  |-  ( ( J  e.  1stc  /\  ( U. J  \  x
)  C_  U. J )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  <->  E. f ( f : NN --> ( U. J  \  x )  /\  f
( ~~> t `  J
) y ) ) )
52, 4mpan2 685 . . . . . . . . 9  |-  ( J  e.  1stc  ->  ( y  e.  ( ( cls `  J ) `  ( U. J  \  x
) )  <->  E. f
( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) ) )
65adantr 472 . . . . . . . 8  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  <->  E. f ( f : NN --> ( U. J  \  x )  /\  f
( ~~> t `  J
) y ) ) )
71adantr 472 . . . . . . . . . . . . . 14  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  J  e.  Top )
87adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  J  e.  Top )
93toptopon 20025 . . . . . . . . . . . . 13  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
108, 9sylib 201 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  J  e.  (TopOn `  U. J ) )
11 simprr 774 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f ( ~~> t `  J )
y )
12 lmcl 20390 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  U. J )  /\  f
( ~~> t `  J
) y )  -> 
y  e.  U. J
)
1310, 11, 12syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  U. J )
14 nnuz 11218 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
15 vex 3034 . . . . . . . . . . . . . . . . 17  |-  f  e. 
_V
1615rnex 6746 . . . . . . . . . . . . . . . 16  |-  ran  f  e.  _V
17 snex 4641 . . . . . . . . . . . . . . . 16  |-  { y }  e.  _V
1816, 17unex 6608 . . . . . . . . . . . . . . 15  |-  ( ran  f  u.  { y } )  e.  _V
19 resttop 20253 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( ran  f  u.  {
y } )  e. 
_V )  ->  ( Jt  ( ran  f  u.  {
y } ) )  e.  Top )
208, 18, 19sylancl 675 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e. 
Top )
21 eqid 2471 . . . . . . . . . . . . . . 15  |-  U. ( Jt  ( ran  f  u.  {
y } ) )  =  U. ( Jt  ( ran  f  u.  {
y } ) )
2221toptopon 20025 . . . . . . . . . . . . . 14  |-  ( ( Jt  ( ran  f  u. 
{ y } ) )  e.  Top  <->  ( Jt  ( ran  f  u.  { y } ) )  e.  (TopOn `  U. ( Jt  ( ran  f  u.  {
y } ) ) ) )
2320, 22sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e.  (TopOn `  U. ( Jt  ( ran  f  u.  {
y } ) ) ) )
24 1zzd 10992 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  1  e.  ZZ )
25 eqid 2471 . . . . . . . . . . . . . . 15  |-  ( Jt  ( ran  f  u.  {
y } ) )  =  ( Jt  ( ran  f  u.  { y } ) )
2618a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  e.  _V )
27 ssun2 3589 . . . . . . . . . . . . . . . . 17  |-  { y }  C_  ( ran  f  u.  { y } )
28 vex 3034 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
2928snss 4087 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ran  f  u.  { y } )  <->  { y }  C_  ( ran  f  u.  {
y } ) )
3027, 29mpbir 214 . . . . . . . . . . . . . . . 16  |-  y  e.  ( ran  f  u. 
{ y } )
3130a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( ran  f  u.  {
y } ) )
32 ffn 5739 . . . . . . . . . . . . . . . . . 18  |-  ( f : NN --> ( U. J  \  x )  -> 
f  Fn  NN )
3332ad2antrl 742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f  Fn  NN )
34 dffn3 5748 . . . . . . . . . . . . . . . . 17  |-  ( f  Fn  NN  <->  f : NN
--> ran  f )
3533, 34sylib 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ran  f )
36 ssun1 3588 . . . . . . . . . . . . . . . 16  |-  ran  f  C_  ( ran  f  u. 
{ y } )
37 fss 5749 . . . . . . . . . . . . . . . 16  |-  ( ( f : NN --> ran  f  /\  ran  f  C_  ( ran  f  u.  { y } ) )  -> 
f : NN --> ( ran  f  u.  { y } ) )
3835, 36, 37sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ( ran  f  u. 
{ y } ) )
3925, 14, 26, 8, 31, 24, 38lmss 20391 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( f
( ~~> t `  J
) y  <->  f ( ~~> t `  ( Jt  ( ran  f  u.  { y } ) ) ) y ) )
4011, 39mpbid 215 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f ( ~~> t `  ( Jt  ( ran  f  u.  { y } ) ) ) y )
4138ffvelrnda 6037 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( ran  f  u.  { y } ) )
42 simprl 772 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> ( U. J  \  x ) )
4342ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( U. J  \  x ) )
4443eldifbd 3403 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  -.  ( f `  k )  e.  x
)
4541, 44eldifd 3401 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  x  e.  (𝑘Gen `  J ) )  /\  ( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( ( ran  f  u.  {
y } )  \  x ) )
46 difin 3671 . . . . . . . . . . . . . . 15  |-  ( ( ran  f  u.  {
y } )  \ 
( ( ran  f  u.  { y } )  i^i  x ) )  =  ( ( ran  f  u.  { y } )  \  x
)
47 frn 5747 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : NN --> ( U. J  \  x )  ->  ran  f  C_  ( U. J  \  x ) )
4847ad2antrl 742 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ran  f  C_  ( U. J  \  x
) )
4948difss2d 3552 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ran  f  C_  U. J )
5013snssd 4108 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  { y }  C_  U. J )
5149, 50unssd 3601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  C_  U. J
)
523restuni 20255 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  ( ran  f  u.  {
y } )  C_  U. J )  ->  ( ran  f  u.  { y } )  =  U. ( Jt  ( ran  f  u.  { y } ) ) )
538, 51, 52syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ran  f  u.  { y } )  =  U. ( Jt  ( ran  f  u.  { y } ) ) )
5453difeq1d 3539 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  (
( ran  f  u.  { y } )  i^i  x ) )  =  ( U. ( Jt  ( ran  f  u.  {
y } ) ) 
\  ( ( ran  f  u.  { y } )  i^i  x
) ) )
5546, 54syl5eqr 2519 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  x
)  =  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) ) )
56 incom 3616 . . . . . . . . . . . . . . . 16  |-  ( ( ran  f  u.  {
y } )  i^i  x )  =  ( x  i^i  ( ran  f  u.  { y } ) )
57 simplr 770 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  x  e.  (𝑘Gen
`  J ) )
58 fss 5749 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : NN --> ( U. J  \  x )  /\  ( U. J  \  x
)  C_  U. J )  ->  f : NN --> U. J )
5942, 2, 58sylancl 675 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  f : NN
--> U. J )
6010, 59, 111stckgenlem 20645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( Jt  ( ran  f  u.  { y } ) )  e. 
Comp )
61 kgeni 20629 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  (𝑘Gen `  J
)  /\  ( Jt  ( ran  f  u.  { y } ) )  e. 
Comp )  ->  (
x  i^i  ( ran  f  u.  { y } ) )  e.  ( Jt  ( ran  f  u.  { y } ) ) )
6257, 60, 61syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( x  i^i  ( ran  f  u. 
{ y } ) )  e.  ( Jt  ( ran  f  u.  {
y } ) ) )
6356, 62syl5eqel 2553 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  i^i  x
)  e.  ( Jt  ( ran  f  u.  {
y } ) ) )
6421opncld 20125 . . . . . . . . . . . . . . 15  |-  ( ( ( Jt  ( ran  f  u.  { y } ) )  e.  Top  /\  ( ( ran  f  u.  { y } )  i^i  x )  e.  ( Jt  ( ran  f  u.  { y } ) ) )  ->  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) )  e.  ( Clsd `  ( Jt  ( ran  f  u.  {
y } ) ) ) )
6520, 63, 64syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( U. ( Jt  ( ran  f  u.  { y } ) )  \  ( ( ran  f  u.  {
y } )  i^i  x ) )  e.  ( Clsd `  ( Jt  ( ran  f  u.  {
y } ) ) ) )
6655, 65eqeltrd 2549 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  ( ( ran  f  u.  { y } )  \  x
)  e.  ( Clsd `  ( Jt  ( ran  f  u.  { y } ) ) ) )
6714, 23, 24, 40, 45, 66lmcld 20396 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( ( ran  f  u.  { y } ) 
\  x ) )
6867eldifbd 3403 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  -.  y  e.  x )
6913, 68eldifd 3401 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J
) )  /\  (
f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y ) )  ->  y  e.  ( U. J  \  x
) )
7069ex 441 . . . . . . . . 9  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( f : NN --> ( U. J  \  x )  /\  f ( ~~> t `  J ) y )  ->  y  e.  ( U. J  \  x
) ) )
7170exlimdv 1787 . . . . . . . 8  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( E. f
( f : NN --> ( U. J  \  x
)  /\  f ( ~~> t `  J )
y )  ->  y  e.  ( U. J  \  x ) ) )
726, 71sylbid 223 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( y  e.  ( ( cls `  J
) `  ( U. J  \  x ) )  ->  y  e.  ( U. J  \  x
) ) )
7372ssrdv 3424 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) )
743iscld4 20158 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( U. J  \  x
)  C_  U. J )  ->  ( ( U. J  \  x )  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) ) )
757, 2, 74sylancl 675 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( ( U. J  \  x )  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  ( U. J  \  x
) )  C_  ( U. J  \  x
) ) )
7673, 75mpbird 240 . . . . 5  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( U. J  \  x )  e.  (
Clsd `  J )
)
77 elssuni 4219 . . . . . . . 8  |-  ( x  e.  (𝑘Gen `  J )  ->  x  C_  U. (𝑘Gen `  J
) )
7877adantl 473 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  C_  U. (𝑘Gen `  J ) )
793kgenuni 20631 . . . . . . . 8  |-  ( J  e.  Top  ->  U. J  =  U. (𝑘Gen `  J ) )
807, 79syl 17 . . . . . . 7  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  U. J  =  U. (𝑘Gen
`  J ) )
8178, 80sseqtr4d 3455 . . . . . 6  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  C_  U. J
)
823isopn2 20124 . . . . . 6  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( x  e.  J  <->  ( U. J  \  x )  e.  (
Clsd `  J )
) )
837, 81, 82syl2anc 673 . . . . 5  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  ( x  e.  J  <->  ( U. J  \  x )  e.  (
Clsd `  J )
) )
8476, 83mpbird 240 . . . 4  |-  ( ( J  e.  1stc  /\  x  e.  (𝑘Gen `  J ) )  ->  x  e.  J
)
8584ex 441 . . 3  |-  ( J  e.  1stc  ->  ( x  e.  (𝑘Gen `  J )  ->  x  e.  J )
)
8685ssrdv 3424 . 2  |-  ( J  e.  1stc  ->  (𝑘Gen `  J
)  C_  J )
87 iskgen2 20640 . 2  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)
881, 86, 87sylanbrc 677 1  |-  ( J  e.  1stc  ->  J  e. 
ran 𝑘Gen )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   {csn 3959   U.cuni 4190   class class class wbr 4395   ran crn 4840    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308   1c1 9558   NNcn 10631   ↾t crest 15397   Topctop 19994  TopOnctopon 19995   Clsdccld 20108   clsccl 20110   ~~> tclm 20319   Compccmp 20478   1stcc1stc 20529  𝑘Genckgen 20625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cc 8883  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-pm 7493  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fi 7943  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-rest 15399  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cld 20111  df-ntr 20112  df-cls 20113  df-lm 20322  df-cmp 20479  df-1stc 20531  df-kgen 20626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator