MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restin Structured version   Visualization version   GIF version

Theorem restin 20780
Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restin.1 𝑋 = 𝐽
Assertion
Ref Expression
restin ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))

Proof of Theorem restin
StepHypRef Expression
1 restin.1 . . . . 5 𝑋 = 𝐽
2 uniexg 6853 . . . . 5 (𝐽𝑉 𝐽 ∈ V)
31, 2syl5eqel 2692 . . . 4 (𝐽𝑉𝑋 ∈ V)
43adantr 480 . . 3 ((𝐽𝑉𝐴𝑊) → 𝑋 ∈ V)
5 restco 20778 . . . 4 ((𝐽𝑉𝑋 ∈ V ∧ 𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
653com23 1263 . . 3 ((𝐽𝑉𝐴𝑊𝑋 ∈ V) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
74, 6mpd3an3 1417 . 2 ((𝐽𝑉𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t (𝑋𝐴)))
81restid 15917 . . . 4 (𝐽𝑉 → (𝐽t 𝑋) = 𝐽)
98adantr 480 . . 3 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝑋) = 𝐽)
109oveq1d 6564 . 2 ((𝐽𝑉𝐴𝑊) → ((𝐽t 𝑋) ↾t 𝐴) = (𝐽t 𝐴))
11 incom 3767 . . . 4 (𝑋𝐴) = (𝐴𝑋)
1211oveq2i 6560 . . 3 (𝐽t (𝑋𝐴)) = (𝐽t (𝐴𝑋))
1312a1i 11 . 2 ((𝐽𝑉𝐴𝑊) → (𝐽t (𝑋𝐴)) = (𝐽t (𝐴𝑋)))
147, 10, 133eqtr3d 2652 1 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = (𝐽t (𝐴𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539   cuni 4372  (class class class)co 6549  t crest 15904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rest 15906
This theorem is referenced by:  restuni2  20781  cnrest2r  20901  cnrmi  20974  restcnrm  20976  resthauslem  20977  imacmp  21010  fiuncmp  21017  kgeni  21150  ressxms  22140  ptrest  32578  restuni6  38337
  Copyright terms: Public domain W3C validator