Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrest Structured version   Visualization version   GIF version

Theorem ptrest 32578
 Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
Hypotheses
Ref Expression
ptrest.0 (𝜑𝐴𝑉)
ptrest.1 (𝜑𝐹:𝐴⟶Top)
ptrest.2 ((𝜑𝑘𝐴) → 𝑆𝑊)
Assertion
Ref Expression
ptrest (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hints:   𝑆(𝑘)   𝑊(𝑘)

Proof of Theorem ptrest
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 firest 15916 . . . 4 (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)
2 snex 4835 . . . . . . . 8 { (∏t𝐹)} ∈ V
3 ptrest.0 . . . . . . . . . 10 (𝜑𝐴𝑉)
4 fvex 6113 . . . . . . . . . . 11 (𝐹𝑢) ∈ V
54rgenw 2908 . . . . . . . . . 10 𝑢𝐴 (𝐹𝑢) ∈ V
6 eqid 2610 . . . . . . . . . . 11 (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))
76mpt2exxg 7133 . . . . . . . . . 10 ((𝐴𝑉 ∧ ∀𝑢𝐴 (𝐹𝑢) ∈ V) → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
83, 5, 7sylancl 693 . . . . . . . . 9 (𝜑 → (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
9 rnexg 6990 . . . . . . . . 9 ((𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
108, 9syl 17 . . . . . . . 8 (𝜑 → ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V)
11 unexg 6857 . . . . . . . 8 (({ (∏t𝐹)} ∈ V ∧ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ∈ V) → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
122, 10, 11sylancr 694 . . . . . . 7 (𝜑 → ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V)
13 ptrest.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝑆𝑊)
1413ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝑆𝑊)
15 ixpexg 7818 . . . . . . . 8 (∀𝑘𝐴 𝑆𝑊X𝑘𝐴 𝑆 ∈ V)
1614, 15syl 17 . . . . . . 7 (𝜑X𝑘𝐴 𝑆 ∈ V)
17 restval 15910 . . . . . . 7 ((({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
1812, 16, 17syl2anc 691 . . . . . 6 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)))
19 mptun 5938 . . . . . . . . 9 (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2019rneqi 5273 . . . . . . . 8 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
21 rnun 5460 . . . . . . . 8 ran ((𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
2220, 21eqtri 2632 . . . . . . 7 ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)))
23 elsni 4142 . . . . . . . . . . . . . 14 (𝑥 ∈ { (∏t𝐹)} → 𝑥 = (∏t𝐹))
2423ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 ∈ { (∏t𝐹)} → (𝑥X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
2524mpteq2ia 4668 . . . . . . . . . . . 12 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
26 fvex 6113 . . . . . . . . . . . . . 14 (∏t𝐹) ∈ V
2726uniex 6851 . . . . . . . . . . . . 13 (∏t𝐹) ∈ V
2827inex1 4727 . . . . . . . . . . . . 13 ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V
29 fmptsn 6338 . . . . . . . . . . . . 13 (( (∏t𝐹) ∈ V ∧ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ∈ V) → {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)))
3027, 28, 29mp2an 704 . . . . . . . . . . . 12 {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = (𝑥 ∈ { (∏t𝐹)} ↦ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
3125, 30eqtr4i 2635 . . . . . . . . . . 11 (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3231rneqi 5273 . . . . . . . . . 10 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩}
3327rnsnop 5534 . . . . . . . . . 10 ran {⟨ (∏t𝐹), ( (∏t𝐹) ∩ X𝑘𝐴 𝑆)⟩} = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
3432, 33eqtri 2632 . . . . . . . . 9 ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)}
35 ptrest.1 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶Top)
3635ffvelrnda 6267 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
37 inss1 3795 . . . . . . . . . . . . . . 15 ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)
38 eqid 2610 . . . . . . . . . . . . . . . 16 (𝐹𝑘) = (𝐹𝑘)
3938restuni 20776 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ Top ∧ ( (𝐹𝑘) ∩ 𝑆) ⊆ (𝐹𝑘)) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4036, 37, 39sylancl 693 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
41 fvex 6113 . . . . . . . . . . . . . . . . 17 (𝐹𝑘) ∈ V
4238restin 20780 . . . . . . . . . . . . . . . . 17 (((𝐹𝑘) ∈ V ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
4341, 13, 42sylancr 694 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))))
44 incom 3767 . . . . . . . . . . . . . . . . 17 (𝑆 (𝐹𝑘)) = ( (𝐹𝑘) ∩ 𝑆)
4544oveq2i 6560 . . . . . . . . . . . . . . . 16 ((𝐹𝑘) ↾t (𝑆 (𝐹𝑘))) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆))
4643, 45syl6eq 2660 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4746unieqd 4382 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑘) ↾t ( (𝐹𝑘) ∩ 𝑆)))
4840, 47eqtr4d 2647 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ( (𝐹𝑘) ∩ 𝑆) = ((𝐹𝑘) ↾t 𝑆))
4948ixpeq2dva 7809 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆))
50 ixpin 7819 . . . . . . . . . . . 12 X𝑘𝐴 ( (𝐹𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆)
51 nfcv 2751 . . . . . . . . . . . . . 14 𝑦 ((𝐹𝑘) ↾t 𝑆)
52 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑦)
53 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑘t
54 nfcsb1v 3515 . . . . . . . . . . . . . . . 16 𝑘𝑦 / 𝑘𝑆
5552, 53, 54nfov 6575 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
5655nfuni 4378 . . . . . . . . . . . . . 14 𝑘 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
57 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
58 csbeq1a 3508 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
5957, 58oveq12d 6567 . . . . . . . . . . . . . . 15 (𝑘 = 𝑦 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6059unieqd 4382 . . . . . . . . . . . . . 14 (𝑘 = 𝑦 ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6151, 56, 60cbvixp 7811 . . . . . . . . . . . . 13 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
62 ixpeq2 7808 . . . . . . . . . . . . . 14 (∀𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
63 ovex 6577 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V
64 nfcv 2751 . . . . . . . . . . . . . . . . 17 𝑘𝑦
65 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)) = (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))
6664, 55, 59, 65fvmptf 6209 . . . . . . . . . . . . . . . 16 ((𝑦𝐴 ∧ ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6763, 66mpan2 703 . . . . . . . . . . . . . . 15 (𝑦𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6867unieqd 4382 . . . . . . . . . . . . . 14 (𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆))
6962, 68mprg 2910 . . . . . . . . . . . . 13 X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = X𝑦𝐴 ((𝐹𝑦) ↾t 𝑦 / 𝑘𝑆)
7061, 69eqtr4i 2635 . . . . . . . . . . . 12 X𝑘𝐴 ((𝐹𝑘) ↾t 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦)
7149, 50, 703eqtr3g 2667 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦))
72 eqid 2610 . . . . . . . . . . . . . 14 (∏t𝐹) = (∏t𝐹)
7372ptuni 21207 . . . . . . . . . . . . 13 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
743, 35, 73syl2anc 691 . . . . . . . . . . . 12 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
7574ineq1d 3775 . . . . . . . . . . 11 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ X𝑘𝐴 𝑆) = ( (∏t𝐹) ∩ X𝑘𝐴 𝑆))
76 resttop 20774 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ Top ∧ 𝑆𝑊) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7736, 13, 76syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → ((𝐹𝑘) ↾t 𝑆) ∈ Top)
7877, 65fmptd 6292 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top)
79 eqid 2610 . . . . . . . . . . . . 13 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
8079ptuni 21207 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
813, 78, 80syl2anc 691 . . . . . . . . . . 11 (𝜑X𝑦𝐴 ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑦) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8271, 75, 813eqtr3d 2652 . . . . . . . . . 10 (𝜑 → ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
8382sneqd 4137 . . . . . . . . 9 (𝜑 → {( (∏t𝐹) ∩ X𝑘𝐴 𝑆)} = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
8434, 83syl5eq 2656 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) = { (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))})
85 vex 3176 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
8685elixp 7801 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤X𝑘𝐴 𝑆 ↔ (𝑤 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆))
8786simprbi 479 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤X𝑘𝐴 𝑆 → ∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆)
88 nfcsb1v 3515 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢 / 𝑘𝑆
8988nfel2 2767 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑤𝑢) ∈ 𝑢 / 𝑘𝑆
90 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢 → (𝑤𝑘) = (𝑤𝑢))
91 csbeq1a 3508 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑢𝑆 = 𝑢 / 𝑘𝑆)
9290, 91eleq12d 2682 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑢 → ((𝑤𝑘) ∈ 𝑆 ↔ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9389, 92rspc 3276 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢𝐴 → (∀𝑘𝐴 (𝑤𝑘) ∈ 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9487, 93syl5 33 . . . . . . . . . . . . . . . . . . . . 21 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 → (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9594pm4.71d 664 . . . . . . . . . . . . . . . . . . . 20 (𝑢𝐴 → (𝑤X𝑘𝐴 𝑆 ↔ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
9695anbi2d 736 . . . . . . . . . . . . . . . . . . 19 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))))
97 an4 861 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
98 elin 3758 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆) ↔ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆))
9998anbi2i 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ ((𝑤𝑢) ∈ 𝑣 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)))
10097, 99bitr4i 266 . . . . . . . . . . . . . . . . . . 19 (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ (𝑤X𝑘𝐴 𝑆 ∧ (𝑤𝑢) ∈ 𝑢 / 𝑘𝑆)) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)))
10196, 100syl6bb 275 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
102 elin 3758 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ (𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆))
10382eleq2d 2673 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑤 ∈ ( (∏t𝐹) ∩ X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
104102, 103syl5bbr 273 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ↔ 𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))))
105104anbi1d 737 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑤 (∏t𝐹) ∧ 𝑤X𝑘𝐴 𝑆) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
106101, 105sylan9bbr 733 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆) ↔ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))))
107106abbidv 2728 . . . . . . . . . . . . . . . 16 ((𝜑𝑢𝐴) → {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))})
108 eqid 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) = (𝑤 (∏t𝐹) ↦ (𝑤𝑢))
109108mptpreima 5545 . . . . . . . . . . . . . . . . . . 19 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) = {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣}
110 df-rab 2905 . . . . . . . . . . . . . . . . . . 19 {𝑤 (∏t𝐹) ∣ (𝑤𝑢) ∈ 𝑣} = {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)}
111109, 110eqtr2i 2633 . . . . . . . . . . . . . . . . . 18 {𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)
112 abid2 2732 . . . . . . . . . . . . . . . . . 18 {𝑤𝑤X𝑘𝐴 𝑆} = X𝑘𝐴 𝑆
113111, 112ineq12i 3774 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
114 inab 3854 . . . . . . . . . . . . . . . . 17 ({𝑤 ∣ (𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣)} ∩ {𝑤𝑤X𝑘𝐴 𝑆}) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
115113, 114eqtr3i 2634 . . . . . . . . . . . . . . . 16 (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = {𝑤 ∣ ((𝑤 (∏t𝐹) ∧ (𝑤𝑢) ∈ 𝑣) ∧ 𝑤X𝑘𝐴 𝑆)}
116 eqid 2610 . . . . . . . . . . . . . . . . . 18 (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) = (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢))
117116mptpreima 5545 . . . . . . . . . . . . . . . . 17 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)}
118 df-rab 2905 . . . . . . . . . . . . . . . . 17 {𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∣ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆)} = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
119117, 118eqtri 2632 . . . . . . . . . . . . . . . 16 ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = {𝑤 ∣ (𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ∧ (𝑤𝑢) ∈ (𝑣𝑢 / 𝑘𝑆))}
120107, 115, 1193eqtr4g 2669 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)))
121120eqeq2d 2620 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
122121rexbidv 3034 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆))))
123 ineq1 3769 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑦 → (𝑣𝑢 / 𝑘𝑆) = (𝑦𝑢 / 𝑘𝑆))
124123imaeq2d 5385 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
125124eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
126125cbvrexv 3148 . . . . . . . . . . . . 13 (∃𝑣 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑣𝑢 / 𝑘𝑆)) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
127122, 126syl6bb 275 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
128 vex 3176 . . . . . . . . . . . . . . 15 𝑦 ∈ V
129128inex1 4727 . . . . . . . . . . . . . 14 (𝑦𝑢 / 𝑘𝑆) ∈ V
130129a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑦 ∈ (𝐹𝑢)) → (𝑦𝑢 / 𝑘𝑆) ∈ V)
131 ovex 6577 . . . . . . . . . . . . . . . . 17 ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V
132 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑘𝑢
133 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑘(𝐹𝑢)
134133, 53, 88nfov 6575 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)
135 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝐹𝑘) = (𝐹𝑢))
136135, 91oveq12d 6567 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → ((𝐹𝑘) ↾t 𝑆) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
137132, 134, 136, 65fvmptf 6209 . . . . . . . . . . . . . . . . 17 ((𝑢𝐴 ∧ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ∈ V) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
138131, 137mpan2 703 . . . . . . . . . . . . . . . 16 (𝑢𝐴 → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
139138adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) = ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆))
140139eleq2d 2673 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ 𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆)))
141 nfv 1830 . . . . . . . . . . . . . . . . 17 𝑘(𝜑𝑢𝐴)
142 nfcsb1v 3515 . . . . . . . . . . . . . . . . . 18 𝑘𝑢 / 𝑘𝑊
14388, 142nfel 2763 . . . . . . . . . . . . . . . . 17 𝑘𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊
144141, 143nfim 1813 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
145 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 → (𝑘𝐴𝑢𝐴))
146145anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ((𝜑𝑘𝐴) ↔ (𝜑𝑢𝐴)))
147 csbeq1a 3508 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢𝑊 = 𝑢 / 𝑘𝑊)
14891, 147eleq12d 2682 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → (𝑆𝑊𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊))
149146, 148imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (((𝜑𝑘𝐴) → 𝑆𝑊) ↔ ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)))
150144, 149, 13chvar 2250 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐴) → 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊)
151 elrest 15911 . . . . . . . . . . . . . . 15 (((𝐹𝑢) ∈ V ∧ 𝑢 / 𝑘𝑆𝑢 / 𝑘𝑊) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
1524, 150, 151sylancr 694 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝐹𝑢) ↾t 𝑢 / 𝑘𝑆) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
153140, 152bitrd 267 . . . . . . . . . . . . 13 ((𝜑𝑢𝐴) → (𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑣 = (𝑦𝑢 / 𝑘𝑆)))
154 imaeq2 5381 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆)))
155154eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑣 = (𝑦𝑢 / 𝑘𝑆) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
156155adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐴) ∧ 𝑣 = (𝑦𝑢 / 𝑘𝑆)) → (𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ 𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
157130, 153, 156rexxfr2d 4809 . . . . . . . . . . . 12 ((𝜑𝑢𝐴) → (∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣) ↔ ∃𝑦 ∈ (𝐹𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ (𝑦𝑢 / 𝑘𝑆))))
158127, 157bitr4d 270 . . . . . . . . . . 11 ((𝜑𝑢𝐴) → (∃𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
159158rexbidva 3031 . . . . . . . . . 10 (𝜑 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
160159abbidv 2728 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)})
161 eqid 2610 . . . . . . . . . . 11 (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))
162161rnmpt 5292 . . . . . . . . . 10 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)}
163 nfre1 2988 . . . . . . . . . . 11 𝑥𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)
164 nfv 1830 . . . . . . . . . . 11 𝑦𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)
16527mptex 6390 . . . . . . . . . . . . . . . 16 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
166165cnvex 7006 . . . . . . . . . . . . . . 15 (𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V
167 imaexg 6995 . . . . . . . . . . . . . . 15 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) ∈ V → ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V)
168166, 167ax-mp 5 . . . . . . . . . . . . . 14 ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
169168rgen2w 2909 . . . . . . . . . . . . 13 𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V
170 ineq1 3769 . . . . . . . . . . . . . . 15 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑥X𝑘𝐴 𝑆) = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
171170eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑥 = ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) → (𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ 𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1726, 171rexrnmpt2 6674 . . . . . . . . . . . . 13 (∀𝑢𝐴𝑣 ∈ (𝐹𝑢)((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∈ V → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
173169, 172ax-mp 5 . . . . . . . . . . . 12 (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆))
174 eqeq1 2614 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ 𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
1751742rexbidv 3039 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑦 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
176173, 175syl5bb 271 . . . . . . . . . . 11 (𝑦 = 𝑥 → (∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆) ↔ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)))
177163, 164, 176cbvab 2733 . . . . . . . . . 10 {𝑦 ∣ ∃𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))𝑦 = (𝑥X𝑘𝐴 𝑆)} = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
178162, 177eqtri 2632 . . . . . . . . 9 ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ (𝐹𝑢)𝑥 = (((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣) ∩ X𝑘𝐴 𝑆)}
179 eqid 2610 . . . . . . . . . 10 (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))
180179rnmpt2 6668 . . . . . . . . 9 ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)) = {𝑥 ∣ ∃𝑢𝐴𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢)𝑥 = ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)}
181160, 178, 1803eqtr4g 2669 . . . . . . . 8 (𝜑 → ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆)) = ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))
18284, 181uneq12d 3730 . . . . . . 7 (𝜑 → (ran (𝑥 ∈ { (∏t𝐹)} ↦ (𝑥X𝑘𝐴 𝑆)) ∪ ran (𝑥 ∈ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)) ↦ (𝑥X𝑘𝐴 𝑆))) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18322, 182syl5eq 2656 . . . . . 6 (𝜑 → ran (𝑥 ∈ ({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↦ (𝑥X𝑘𝐴 𝑆)) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
18418, 183eqtrd 2644 . . . . 5 (𝜑 → (({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆) = ({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))
185184fveq2d 6107 . . . 4 (𝜑 → (fi‘(({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))) ↾t X𝑘𝐴 𝑆)) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
1861, 185syl5eqr 2658 . . 3 (𝜑 → ((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆) = (fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣)))))
187186fveq2d 6107 . 2 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
188 eqid 2610 . . . . . 6 (∏t𝐹) = (∏t𝐹)
18972, 188, 6ptval2 21214 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
1903, 35, 189syl2anc 691 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))))
191190oveq1d 6564 . . 3 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
192 fvex 6113 . . . 4 (fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V
193 tgrest 20773 . . . 4 (((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ∈ V ∧ X𝑘𝐴 𝑆 ∈ V) → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
194192, 16, 193sylancr 694 . . 3 (𝜑 → (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)) = ((topGen‘(fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣))))) ↾t X𝑘𝐴 𝑆))
195191, 194eqtr4d 2647 . 2 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (topGen‘((fi‘({ (∏t𝐹)} ∪ ran (𝑢𝐴, 𝑣 ∈ (𝐹𝑢) ↦ ((𝑤 (∏t𝐹) ↦ (𝑤𝑢)) “ 𝑣)))) ↾t X𝑘𝐴 𝑆)))
196 eqid 2610 . . . 4 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))
19779, 196, 179ptval2 21214 . . 3 ((𝐴𝑉 ∧ (𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)):𝐴⟶Top) → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
1983, 78, 197syl2anc 691 . 2 (𝜑 → (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) = (topGen‘(fi‘({ (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆)))} ∪ ran (𝑢𝐴, 𝑣 ∈ ((𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))‘𝑢) ↦ ((𝑤 (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))) ↦ (𝑤𝑢)) “ 𝑣))))))
199187, 195, 1983eqtr4d 2654 1 (𝜑 → ((∏t𝐹) ↾t X𝑘𝐴 𝑆) = (∏t‘(𝑘𝐴 ↦ ((𝐹𝑘) ↾t 𝑆))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173  ⦋csb 3499   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  {csn 4125  ⟨cop 4131  ∪ cuni 4372   ↦ cmpt 4643  ◡ccnv 5037  ran crn 5039   “ cima 5041   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Xcixp 7794  ficfi 8199   ↾t crest 15904  topGenctg 15921  ∏tcpt 15922  Topctop 20517 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ixp 7795  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-pt 15928  df-top 20521  df-bases 20522  df-topon 20523 This theorem is referenced by:  poimirlem30  32609
 Copyright terms: Public domain W3C validator