Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrecube Structured version   Visualization version   GIF version

Theorem ptrecube 32579
Description: Any point in an open set of N-space is surrounded by an open cube within that set. (Contributed by Brendan Leahy, 21-Aug-2020.) (Proof shortened by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
ptrecube.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
ptrecube.d 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
ptrecube ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Distinct variable groups:   𝑛,𝑑,𝑁   𝑃,𝑑,𝑛   𝑆,𝑑,𝑛
Allowed substitution hints:   𝐷(𝑛,𝑑)   𝑅(𝑛,𝑑)

Proof of Theorem ptrecube
Dummy variables 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptrecube.r . . . 4 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
2 fzfi 12633 . . . . 5 (1...𝑁) ∈ Fin
3 retop 22375 . . . . . 6 (topGen‘ran (,)) ∈ Top
4 fnconstg 6006 . . . . . 6 ((topGen‘ran (,)) ∈ Top → ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁))
53, 4ax-mp 5 . . . . 5 ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)
6 eqid 2610 . . . . . 6 {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} = {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}
76ptval 21183 . . . . 5 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}) Fn (1...𝑁)) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
82, 5, 7mp2an 704 . . . 4 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
91, 8eqtri 2632 . . 3 𝑅 = (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))})
109eleq2i 2680 . 2 (𝑆𝑅𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}))
11 tg2 20580 . . 3 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆))
126elpt 21185 . . . . 5 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} ↔ ∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
13 fvex 6113 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ V
1413fvconst2 6374 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
1514eleq2d 2673 . . . . . . . . . . . . 13 (𝑛 ∈ (1...𝑁) → ((𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ (𝑔𝑛) ∈ (topGen‘ran (,))))
1615ralbiia 2962 . . . . . . . . . . . 12 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)))
17 elixp2 7798 . . . . . . . . . . . . . 14 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ↔ (𝑃 ∈ V ∧ 𝑃 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
1817simp3bi 1071 . . . . . . . . . . . . 13 (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛))
19 r19.26 3046 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) ↔ (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)))
20 uniretop 22376 . . . . . . . . . . . . . . . . . . . . 21 ℝ = (topGen‘ran (,))
2120eltopss 20537 . . . . . . . . . . . . . . . . . . . 20 (((topGen‘ran (,)) ∈ Top ∧ (𝑔𝑛) ∈ (topGen‘ran (,))) → (𝑔𝑛) ⊆ ℝ)
223, 21mpan 702 . . . . . . . . . . . . . . . . . . 19 ((𝑔𝑛) ∈ (topGen‘ran (,)) → (𝑔𝑛) ⊆ ℝ)
2322sselda 3568 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → (𝑃𝑛) ∈ ℝ)
24 ptrecube.d . . . . . . . . . . . . . . . . . . . 20 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2524rexmet 22402 . . . . . . . . . . . . . . . . . . 19 𝐷 ∈ (∞Met‘ℝ)
26 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2724, 26tgioo 22407 . . . . . . . . . . . . . . . . . . . 20 (topGen‘ran (,)) = (MetOpen‘𝐷)
2827mopni2 22108 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
2925, 28mp3an1 1403 . . . . . . . . . . . . . . . . . 18 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))
30 r19.42v 3073 . . . . . . . . . . . . . . . . . 18 (∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ∃𝑦 ∈ ℝ+ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3123, 29, 30sylanbrc 695 . . . . . . . . . . . . . . . . 17 (((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
3231ralimi 2936 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)))
33 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑛) → ((𝑃𝑛)(ball‘𝐷)𝑦) = ((𝑃𝑛)(ball‘𝐷)(𝑛)))
3433sseq1d 3595 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑛) → (((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)))
3534anbi2d 736 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑛) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛)) ↔ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
3635ac6sfi 8089 . . . . . . . . . . . . . . . 16 (((1...𝑁) ∈ Fin ∧ ∀𝑛 ∈ (1...𝑁)∃𝑦 ∈ ℝ+ ((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)𝑦) ⊆ (𝑔𝑛))) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
372, 32, 36sylancr 694 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))))
38 1rp 11712 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ+
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ (1...𝑁) = ∅) → 1 ∈ ℝ+)
40 frn 5966 . . . . . . . . . . . . . . . . . . . . 21 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ+)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ+)
42 ffn 5958 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ Fn (1...𝑁))
43 fnfi 8123 . . . . . . . . . . . . . . . . . . . . . . . 24 (( Fn (1...𝑁) ∧ (1...𝑁) ∈ Fin) → ∈ Fin)
4442, 2, 43sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ ∈ Fin)
45 rnfi 8132 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ Fin → ran ∈ Fin)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ∈ Fin)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ∈ Fin)
48 dm0rn0 5263 . . . . . . . . . . . . . . . . . . . . . . . 24 (dom = ∅ ↔ ran = ∅)
49 fdm 5964 . . . . . . . . . . . . . . . . . . . . . . . . 25 (:(1...𝑁)⟶ℝ+ → dom = (1...𝑁))
5049eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . 24 (:(1...𝑁)⟶ℝ+ → (dom = ∅ ↔ (1...𝑁) = ∅))
5148, 50syl5bbr 273 . . . . . . . . . . . . . . . . . . . . . . 23 (:(1...𝑁)⟶ℝ+ → (ran = ∅ ↔ (1...𝑁) = ∅))
5251necon3abid 2818 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → (ran ≠ ∅ ↔ ¬ (1...𝑁) = ∅))
5352biimpar 501 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ≠ ∅)
54 rpssre 11719 . . . . . . . . . . . . . . . . . . . . . . 23 + ⊆ ℝ
5540, 54syl6ss 3580 . . . . . . . . . . . . . . . . . . . . . 22 (:(1...𝑁)⟶ℝ+ → ran ⊆ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → ran ⊆ ℝ)
57 ltso 9997 . . . . . . . . . . . . . . . . . . . . . 22 < Or ℝ
58 fiinfcl 8290 . . . . . . . . . . . . . . . . . . . . . 22 (( < Or ℝ ∧ (ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ)) → inf(ran , ℝ, < ) ∈ ran )
5957, 58mpan 702 . . . . . . . . . . . . . . . . . . . . 21 ((ran ∈ Fin ∧ ran ≠ ∅ ∧ ran ⊆ ℝ) → inf(ran , ℝ, < ) ∈ ran )
6047, 53, 56, 59syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ran )
6141, 60sseldd 3569 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+ ∧ ¬ (1...𝑁) = ∅) → inf(ran , ℝ, < ) ∈ ℝ+)
6239, 61ifclda 4070 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6362adantr 480 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6462adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+)
6564rpxrd 11749 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ*)
66 ffvelrn 6265 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ+)
6766rpxrd 11749 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ℝ*)
68 ne0i 3880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
69 ifnefalse 4048 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1...𝑁) ≠ ∅ → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ (1...𝑁) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7170adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) = inf(ran , ℝ, < ))
7255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ran ⊆ ℝ)
73 0re 9919 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
74 rpge0 11721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ ℝ+ → 0 ≤ 𝑦)
7574rgen 2906 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑦 ∈ ℝ+ 0 ≤ 𝑦
76 ssralv 3629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran ⊆ ℝ+ → (∀𝑦 ∈ ℝ+ 0 ≤ 𝑦 → ∀𝑦 ∈ ran 0 ≤ 𝑦))
7740, 75, 76mpisyl 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (:(1...𝑁)⟶ℝ+ → ∀𝑦 ∈ ran 0 ≤ 𝑦)
78 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
7978ralbidv 2969 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = 0 → (∀𝑦 ∈ ran 𝑥𝑦 ↔ ∀𝑦 ∈ ran 0 ≤ 𝑦))
8079rspcev 3282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℝ ∧ ∀𝑦 ∈ ran 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8173, 77, 80sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (:(1...𝑁)⟶ℝ+ → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
8281adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦)
83 fnfvelrn 6264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( Fn (1...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
8442, 83sylan 487 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (𝑛) ∈ ran )
85 infrelb 10885 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ran ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑥𝑦 ∧ (𝑛) ∈ ran ) → inf(ran , ℝ, < ) ≤ (𝑛))
8672, 82, 84, 85syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . 24 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → inf(ran , ℝ, < ) ≤ (𝑛))
8771, 86eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . . . . 23 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))
8865, 67, 87jca31 555 . . . . . . . . . . . . . . . . . . . . . 22 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)))
89 ssbl 22038 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ (if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
90893expb 1258 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐷 ∈ (∞Met‘ℝ) ∧ (𝑃𝑛) ∈ ℝ) ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9125, 90mpanl1 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃𝑛) ∈ ℝ ∧ ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛))) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9291ancoms 468 . . . . . . . . . . . . . . . . . . . . . 22 ((((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ* ∧ (𝑛) ∈ ℝ*) ∧ if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ≤ (𝑛)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
9388, 92sylan 487 . . . . . . . . . . . . . . . . . . . . 21 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)))
94 sstr2 3575 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ ((𝑃𝑛)(ball‘𝐷)(𝑛)) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9593, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) ∧ (𝑃𝑛) ∈ ℝ) → (((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9695expimpd 627 . . . . . . . . . . . . . . . . . . 19 ((:(1...𝑁)⟶ℝ+𝑛 ∈ (1...𝑁)) → (((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9796ralimdva 2945 . . . . . . . . . . . . . . . . . 18 (:(1...𝑁)⟶ℝ+ → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
9897imp 444 . . . . . . . . . . . . . . . . 17 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
9924fveq2i 6106 . . . . . . . . . . . . . . . . . . . . . 22 (ball‘𝐷) = (ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))
10099oveqi 6562 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) = ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )))
101100sseq1i 3592 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
102101ralbii 2963 . . . . . . . . . . . . . . . . . . 19 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛))
103 nfv 1830 . . . . . . . . . . . . . . . . . . 19 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
104102, 103nfxfr 1771 . . . . . . . . . . . . . . . . . 18 𝑑𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)
105 oveq2 6557 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → ((𝑃𝑛)(ball‘𝐷)𝑑) = ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))))
106105sseq1d 3595 . . . . . . . . . . . . . . . . . . 19 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
107106ralbidv 2969 . . . . . . . . . . . . . . . . . 18 (𝑑 = if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) ↔ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)))
108104, 107rspce 3277 . . . . . . . . . . . . . . . . 17 ((if((1...𝑁) = ∅, 1, inf(ran , ℝ, < )) ∈ ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)if((1...𝑁) = ∅, 1, inf(ran , ℝ, < ))) ⊆ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
10963, 98, 108syl2anc 691 . . . . . . . . . . . . . . . 16 ((:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
110109exlimiv 1845 . . . . . . . . . . . . . . 15 (∃(:(1...𝑁)⟶ℝ+ ∧ ∀𝑛 ∈ (1...𝑁)((𝑃𝑛) ∈ ℝ ∧ ((𝑃𝑛)(ball‘𝐷)(𝑛)) ⊆ (𝑔𝑛))) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11137, 110syl 17 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (1...𝑁)((𝑔𝑛) ∈ (topGen‘ran (,)) ∧ (𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11219, 111sylbir 224 . . . . . . . . . . . . 13 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ ∀𝑛 ∈ (1...𝑁)(𝑃𝑛) ∈ (𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11318, 112sylan2 490 . . . . . . . . . . . 12 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (topGen‘ran (,)) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
11416, 113sylanb 488 . . . . . . . . . . 11 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛))
115 ss2ixp 7807 . . . . . . . . . . . . 13 (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛))
116 sstr2 3575 . . . . . . . . . . . . . 14 (X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
117116com12 32 . . . . . . . . . . . . 13 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ X𝑛 ∈ (1...𝑁)(𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
118115, 117syl5 33 . . . . . . . . . . . 12 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∀𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
119118reximdv 2999 . . . . . . . . . . 11 (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → (∃𝑑 ∈ ℝ+𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ (𝑔𝑛) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
120114, 119syl5com 31 . . . . . . . . . 10 ((∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ 𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → (X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆 → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
121120expimpd 627 . . . . . . . . 9 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
122 eleq2 2677 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑃𝑧𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛)))
123 sseq1 3589 . . . . . . . . . . 11 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (𝑧𝑆X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆))
124122, 123anbi12d 743 . . . . . . . . . 10 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) ↔ (𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆)))
125124imbi1d 330 . . . . . . . . 9 (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → (((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆) ↔ ((𝑃X𝑛 ∈ (1...𝑁)(𝑔𝑛) ∧ X𝑛 ∈ (1...𝑁)(𝑔𝑛) ⊆ 𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
126121, 125syl5ibrcom 236 . . . . . . . 8 (∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
1271263ad2ant2 1076 . . . . . . 7 ((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) → (𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)))
128127imp 444 . . . . . 6 (((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
129128exlimiv 1845 . . . . 5 (∃𝑔((𝑔 Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑔𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑧 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑧)(𝑔𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑧 = X𝑛 ∈ (1...𝑁)(𝑔𝑛)) → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
13012, 129sylbi 206 . . . 4 (𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} → ((𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆))
131130rexlimiv 3009 . . 3 (∃𝑧 ∈ {𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))} (𝑃𝑧𝑧𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13211, 131syl 17 . 2 ((𝑆 ∈ (topGen‘{𝑥 ∣ ∃(( Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)(𝑛) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ ((1...𝑁) ∖ 𝑤)(𝑛) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) ∧ 𝑥 = X𝑛 ∈ (1...𝑁)(𝑛))}) ∧ 𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
13310, 132sylanb 488 1 ((𝑆𝑅𝑃𝑆) → ∃𝑑 ∈ ℝ+ X𝑛 ∈ (1...𝑁)((𝑃𝑛)(ball‘𝐷)𝑑) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  c0 3874  ifcif 4036  {csn 4125   cuni 4372   class class class wbr 4583   Or wor 4958   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  ccom 5042   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  Xcixp 7794  Fincfn 7841  infcinf 8230  cr 9814  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954  cmin 10145  +crp 11708  (,)cioo 12046  ...cfz 12197  abscabs 13822  topGenctg 15921  tcpt 15922  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-topgen 15927  df-pt 15928  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523
This theorem is referenced by:  poimirlem29  32608
  Copyright terms: Public domain W3C validator