Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ptrest Structured version   Visualization version   Unicode version

Theorem ptrest 31939
Description: Expressing a restriction of a product topology as a product topology. (Contributed by Brendan Leahy, 24-Mar-2019.)
Hypotheses
Ref Expression
ptrest.0  |-  ( ph  ->  A  e.  V )
ptrest.1  |-  ( ph  ->  F : A --> Top )
ptrest.2  |-  ( (
ph  /\  k  e.  A )  ->  S  e.  W )
Assertion
Ref Expression
ptrest  |-  ( ph  ->  ( ( Xt_ `  F
)t  X_ k  e.  A  S )  =  (
Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) )
Distinct variable groups:    ph, k    A, k    k, F    k, V
Allowed substitution hints:    S( k)    W( k)

Proof of Theorem ptrest
Dummy variables  u  v  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 firest 15331 . . . 4  |-  ( fi
`  ( ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )t  X_ k  e.  A  S ) )  =  ( ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) ) )t  X_ k  e.  A  S )
2 snex 4641 . . . . . . . 8  |-  { U. ( Xt_ `  F ) }  e.  _V
3 ptrest.0 . . . . . . . . . 10  |-  ( ph  ->  A  e.  V )
4 fvex 5875 . . . . . . . . . . 11  |-  ( F `
 u )  e. 
_V
54rgenw 2749 . . . . . . . . . 10  |-  A. u  e.  A  ( F `  u )  e.  _V
6 eqid 2451 . . . . . . . . . . 11  |-  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) )  =  ( u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )
76mpt2exxg 6867 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  A. u  e.  A  ( F `  u )  e.  _V )  -> 
( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) )  e.  _V )
83, 5, 7sylancl 668 . . . . . . . . 9  |-  ( ph  ->  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) )  e.  _V )
9 rnexg 6725 . . . . . . . . 9  |-  ( ( u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  e. 
_V  ->  ran  ( u  e.  A ,  v  e.  ( F `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v ) )  e.  _V )
108, 9syl 17 . . . . . . . 8  |-  ( ph  ->  ran  ( u  e.  A ,  v  e.  ( F `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v ) )  e.  _V )
11 unexg 6592 . . . . . . . 8  |-  ( ( { U. ( Xt_ `  F ) }  e.  _V  /\  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) )  e.  _V )  ->  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) )  e.  _V )
122, 10, 11sylancr 669 . . . . . . 7  |-  ( ph  ->  ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) ) )  e. 
_V )
13 ptrest.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  S  e.  W )
1413ralrimiva 2802 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  S  e.  W )
15 ixpexg 7546 . . . . . . . 8  |-  ( A. k  e.  A  S  e.  W  ->  X_ k  e.  A  S  e.  _V )
1614, 15syl 17 . . . . . . 7  |-  ( ph  -> 
X_ k  e.  A  S  e.  _V )
17 restval 15325 . . . . . . 7  |-  ( ( ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) ) )  e. 
_V  /\  X_ k  e.  A  S  e.  _V )  ->  ( ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )t  X_ k  e.  A  S )  =  ran  ( x  e.  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )  |->  ( x  i^i  X_ k  e.  A  S ) ) )
1812, 16, 17syl2anc 667 . . . . . 6  |-  ( ph  ->  ( ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) )t  X_ k  e.  A  S
)  =  ran  (
x  e.  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )  |->  ( x  i^i  X_ k  e.  A  S ) ) )
19 mptun 5709 . . . . . . . . 9  |-  ( x  e.  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) 
|->  ( x  i^i  X_ k  e.  A  S )
)  =  ( ( x  e.  { U. ( Xt_ `  F ) }  |->  ( x  i^i  X_ k  e.  A  S ) )  u.  ( x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) 
|->  ( x  i^i  X_ k  e.  A  S )
) )
2019rneqi 5061 . . . . . . . 8  |-  ran  (
x  e.  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )  |->  ( x  i^i  X_ k  e.  A  S ) )  =  ran  ( ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( x  i^i  X_ k  e.  A  S )
)  u.  ( x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) )  |->  ( x  i^i  X_ k  e.  A  S ) ) )
21 rnun 5244 . . . . . . . 8  |-  ran  (
( x  e.  { U. ( Xt_ `  F
) }  |->  ( x  i^i  X_ k  e.  A  S ) )  u.  ( x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) 
|->  ( x  i^i  X_ k  e.  A  S )
) )  =  ( ran  ( x  e. 
{ U. ( Xt_ `  F ) }  |->  ( x  i^i  X_ k  e.  A  S )
)  u.  ran  (
x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  |->  ( x  i^i  X_ k  e.  A  S )
) )
2220, 21eqtri 2473 . . . . . . 7  |-  ran  (
x  e.  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) )  |->  ( x  i^i  X_ k  e.  A  S ) )  =  ( ran  ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( x  i^i  X_ k  e.  A  S )
)  u.  ran  (
x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  |->  ( x  i^i  X_ k  e.  A  S )
) )
23 elsni 3993 . . . . . . . . . . . . . 14  |-  ( x  e.  { U. ( Xt_ `  F ) }  ->  x  =  U. ( Xt_ `  F ) )
2423ineq1d 3633 . . . . . . . . . . . . 13  |-  ( x  e.  { U. ( Xt_ `  F ) }  ->  ( x  i^i  X_ k  e.  A  S )  =  ( U. ( Xt_ `  F
)  i^i  X_ k  e.  A  S ) )
2524mpteq2ia 4485 . . . . . . . . . . . 12  |-  ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( x  i^i  X_ k  e.  A  S )
)  =  ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S )
)
26 fvex 5875 . . . . . . . . . . . . . 14  |-  ( Xt_ `  F )  e.  _V
2726uniex 6587 . . . . . . . . . . . . 13  |-  U. ( Xt_ `  F )  e. 
_V
2827inex1 4544 . . . . . . . . . . . . 13  |-  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S )  e.  _V
29 fmptsn 6084 . . . . . . . . . . . . 13  |-  ( ( U. ( Xt_ `  F
)  e.  _V  /\  ( U. ( Xt_ `  F
)  i^i  X_ k  e.  A  S )  e. 
_V )  ->  { <. U. ( Xt_ `  F
) ,  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) >. }  =  ( x  e.  { U. ( Xt_ `  F ) }  |->  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) ) )
3027, 28, 29mp2an 678 . . . . . . . . . . . 12  |-  { <. U. ( Xt_ `  F
) ,  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) >. }  =  ( x  e.  { U. ( Xt_ `  F ) }  |->  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) )
3125, 30eqtr4i 2476 . . . . . . . . . . 11  |-  ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( x  i^i  X_ k  e.  A  S )
)  =  { <. U. ( Xt_ `  F
) ,  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) >. }
3231rneqi 5061 . . . . . . . . . 10  |-  ran  (
x  e.  { U. ( Xt_ `  F ) }  |->  ( x  i^i  X_ k  e.  A  S ) )  =  ran  { <. U. ( Xt_ `  F ) ,  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) >. }
3327rnsnop 5317 . . . . . . . . . 10  |-  ran  { <. U. ( Xt_ `  F
) ,  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) >. }  =  { ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) }
3432, 33eqtri 2473 . . . . . . . . 9  |-  ran  (
x  e.  { U. ( Xt_ `  F ) }  |->  ( x  i^i  X_ k  e.  A  S ) )  =  { ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) }
35 ptrest.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> Top )
3635ffvelrnda 6022 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  Top )
37 inss1 3652 . . . . . . . . . . . . . . 15  |-  ( U. ( F `  k )  i^i  S )  C_  U. ( F `  k
)
38 eqid 2451 . . . . . . . . . . . . . . . 16  |-  U. ( F `  k )  =  U. ( F `  k )
3938restuni 20178 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  Top  /\  ( U. ( F `  k )  i^i  S
)  C_  U. ( F `  k )
)  ->  ( U. ( F `  k )  i^i  S )  = 
U. ( ( F `
 k )t  ( U. ( F `  k )  i^i  S ) ) )
4036, 37, 39sylancl 668 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  ( U. ( F `  k
)  i^i  S )  =  U. ( ( F `
 k )t  ( U. ( F `  k )  i^i  S ) ) )
41 fvex 5875 . . . . . . . . . . . . . . . . 17  |-  ( F `
 k )  e. 
_V
4238restin 20182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  k
)  e.  _V  /\  S  e.  W )  ->  ( ( F `  k )t  S )  =  ( ( F `  k
)t  ( S  i^i  U. ( F `  k ) ) ) )
4341, 13, 42sylancr 669 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)t 
S )  =  ( ( F `  k
)t  ( S  i^i  U. ( F `  k ) ) ) )
44 incom 3625 . . . . . . . . . . . . . . . . 17  |-  ( S  i^i  U. ( F `
 k ) )  =  ( U. ( F `  k )  i^i  S )
4544oveq2i 6301 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )t  ( S  i^i  U. ( F `  k )
) )  =  ( ( F `  k
)t  ( U. ( F `
 k )  i^i 
S ) )
4643, 45syl6eq 2501 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)t 
S )  =  ( ( F `  k
)t  ( U. ( F `
 k )  i^i 
S ) ) )
4746unieqd 4208 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  U. (
( F `  k
)t 
S )  =  U. ( ( F `  k )t  ( U. ( F `  k )  i^i  S ) ) )
4840, 47eqtr4d 2488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( U. ( F `  k
)  i^i  S )  =  U. ( ( F `
 k )t  S ) )
4948ixpeq2dva 7537 . . . . . . . . . . . 12  |-  ( ph  -> 
X_ k  e.  A  ( U. ( F `  k )  i^i  S
)  =  X_ k  e.  A  U. (
( F `  k
)t 
S ) )
50 ixpin 7547 . . . . . . . . . . . 12  |-  X_ k  e.  A  ( U. ( F `  k )  i^i  S )  =  ( X_ k  e.  A  U. ( F `
 k )  i^i  X_ k  e.  A  S )
51 nfcv 2592 . . . . . . . . . . . . . 14  |-  F/_ y U. ( ( F `  k )t  S )
52 nfcv 2592 . . . . . . . . . . . . . . . 16  |-  F/_ k
( F `  y
)
53 nfcv 2592 . . . . . . . . . . . . . . . 16  |-  F/_ kt
54 nfcsb1v 3379 . . . . . . . . . . . . . . . 16  |-  F/_ k [_ y  /  k ]_ S
5552, 53, 54nfov 6316 . . . . . . . . . . . . . . 15  |-  F/_ k
( ( F `  y )t  [_ y  /  k ]_ S )
5655nfuni 4204 . . . . . . . . . . . . . 14  |-  F/_ k U. ( ( F `  y )t  [_ y  /  k ]_ S )
57 fveq2 5865 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  ( F `  k )  =  ( F `  y ) )
58 csbeq1a 3372 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  S  =  [_ y  /  k ]_ S )
5957, 58oveq12d 6308 . . . . . . . . . . . . . . 15  |-  ( k  =  y  ->  (
( F `  k
)t 
S )  =  ( ( F `  y
)t  [_ y  /  k ]_ S ) )
6059unieqd 4208 . . . . . . . . . . . . . 14  |-  ( k  =  y  ->  U. (
( F `  k
)t 
S )  =  U. ( ( F `  y )t  [_ y  /  k ]_ S ) )
6151, 56, 60cbvixp 7539 . . . . . . . . . . . . 13  |-  X_ k  e.  A  U. (
( F `  k
)t 
S )  =  X_ y  e.  A  U. ( ( F `  y )t  [_ y  /  k ]_ S )
62 ixpeq2 7536 . . . . . . . . . . . . . 14  |-  ( A. y  e.  A  U. ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  y )  =  U. ( ( F `  y )t  [_ y  /  k ]_ S
)  ->  X_ y  e.  A  U. ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  y )  =  X_ y  e.  A  U. ( ( F `  y )t  [_ y  /  k ]_ S ) )
63 ovex 6318 . . . . . . . . . . . . . . . 16  |-  ( ( F `  y )t  [_ y  /  k ]_ S
)  e.  _V
64 nfcv 2592 . . . . . . . . . . . . . . . . 17  |-  F/_ k
y
65 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  A  |->  ( ( F `  k )t  S ) )  =  ( k  e.  A  |->  ( ( F `  k
)t 
S ) )
6664, 55, 59, 65fvmptf 5966 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  ( ( F `  y )t  [_ y  /  k ]_ S )  e.  _V )  ->  ( ( k  e.  A  |->  ( ( F `  k )t  S ) ) `  y
)  =  ( ( F `  y )t  [_ y  /  k ]_ S
) )
6763, 66mpan2 677 . . . . . . . . . . . . . . 15  |-  ( y  e.  A  ->  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  y )  =  ( ( F `  y
)t  [_ y  /  k ]_ S ) )
6867unieqd 4208 . . . . . . . . . . . . . 14  |-  ( y  e.  A  ->  U. (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  y )  =  U. ( ( F `  y )t  [_ y  /  k ]_ S ) )
6962, 68mprg 2751 . . . . . . . . . . . . 13  |-  X_ y  e.  A  U. (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  y )  =  X_ y  e.  A  U. ( ( F `  y )t  [_ y  /  k ]_ S )
7061, 69eqtr4i 2476 . . . . . . . . . . . 12  |-  X_ k  e.  A  U. (
( F `  k
)t 
S )  =  X_ y  e.  A  U. ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  y )
7149, 50, 703eqtr3g 2508 . . . . . . . . . . 11  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  X_ k  e.  A  S )  =  X_ y  e.  A  U. ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  y ) )
72 eqid 2451 . . . . . . . . . . . . . 14  |-  ( Xt_ `  F )  =  (
Xt_ `  F )
7372ptuni 20609 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  F : A --> Top )  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
743, 35, 73syl2anc 667 . . . . . . . . . . . 12  |-  ( ph  -> 
X_ k  e.  A  U. ( F `  k
)  =  U. ( Xt_ `  F ) )
7574ineq1d 3633 . . . . . . . . . . 11  |-  ( ph  ->  ( X_ k  e.  A  U. ( F `
 k )  i^i  X_ k  e.  A  S )  =  ( U. ( Xt_ `  F
)  i^i  X_ k  e.  A  S ) )
76 resttop 20176 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  Top  /\  S  e.  W )  ->  ( ( F `  k )t  S )  e.  Top )
7736, 13, 76syl2anc 667 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)t 
S )  e.  Top )
7877, 65fmptd 6046 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  A  |->  ( ( F `  k )t  S ) ) : A --> Top )
79 eqid 2451 . . . . . . . . . . . . 13  |-  ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  =  ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) )
8079ptuni 20609 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  ( k  e.  A  |->  ( ( F `  k )t  S ) ) : A --> Top )  ->  X_ y  e.  A  U. (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  y )  =  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) )
813, 78, 80syl2anc 667 . . . . . . . . . . 11  |-  ( ph  -> 
X_ y  e.  A  U. ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  y )  =  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) )
8271, 75, 813eqtr3d 2493 . . . . . . . . . 10  |-  ( ph  ->  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S )  =  U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) )
8382sneqd 3980 . . . . . . . . 9  |-  ( ph  ->  { ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S ) }  =  { U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) } )
8434, 83syl5eq 2497 . . . . . . . 8  |-  ( ph  ->  ran  ( x  e. 
{ U. ( Xt_ `  F ) }  |->  ( x  i^i  X_ k  e.  A  S )
)  =  { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) } )
85 vex 3048 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  w  e. 
_V
8685elixp 7529 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  X_ k  e.  A  S 
<->  ( w  Fn  A  /\  A. k  e.  A  ( w `  k
)  e.  S ) )
8786simprbi 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  X_ k  e.  A  S  ->  A. k  e.  A  ( w `  k
)  e.  S )
88 nfcsb1v 3379 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ k [_ u  /  k ]_ S
8988nfel2 2608 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ k ( w `  u
)  e.  [_ u  /  k ]_ S
90 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  u  ->  (
w `  k )  =  ( w `  u ) )
91 csbeq1a 3372 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  u  ->  S  =  [_ u  /  k ]_ S )
9290, 91eleq12d 2523 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  u  ->  (
( w `  k
)  e.  S  <->  ( w `  u )  e.  [_ u  /  k ]_ S
) )
9389, 92rspc 3144 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  e.  A  ->  ( A. k  e.  A  ( w `  k
)  e.  S  -> 
( w `  u
)  e.  [_ u  /  k ]_ S
) )
9487, 93syl5 33 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  A  ->  (
w  e.  X_ k  e.  A  S  ->  ( w `  u )  e.  [_ u  / 
k ]_ S ) )
9594pm4.71d 640 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  A  ->  (
w  e.  X_ k  e.  A  S  <->  ( w  e.  X_ k  e.  A  S  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) ) )
9695anbi2d 710 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  A  ->  (
( ( w  e. 
U. ( Xt_ `  F
)  /\  ( w `  u )  e.  v )  /\  w  e.  X_ k  e.  A  S )  <->  ( (
w  e.  U. ( Xt_ `  F )  /\  ( w `  u
)  e.  v )  /\  ( w  e.  X_ k  e.  A  S  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) ) ) )
97 an4 833 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  U. ( Xt_ `  F )  /\  ( w `  u )  e.  v )  /\  ( w  e.  X_ k  e.  A  S  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) )  <->  ( (
w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S )  /\  ( ( w `  u )  e.  v  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) ) )
98 elin 3617 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S )  <->  ( (
w `  u )  e.  v  /\  (
w `  u )  e.  [_ u  /  k ]_ S ) )
9998anbi2i 700 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S
)  /\  ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) )  <->  ( (
w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S )  /\  ( ( w `  u )  e.  v  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) ) )
10097, 99bitr4i 256 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  U. ( Xt_ `  F )  /\  ( w `  u )  e.  v )  /\  ( w  e.  X_ k  e.  A  S  /\  ( w `  u )  e.  [_ u  /  k ]_ S
) )  <->  ( (
w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S )  /\  ( w `  u
)  e.  ( v  i^i  [_ u  /  k ]_ S ) ) )
10196, 100syl6bb 265 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  A  ->  (
( ( w  e. 
U. ( Xt_ `  F
)  /\  ( w `  u )  e.  v )  /\  w  e.  X_ k  e.  A  S )  <->  ( (
w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S )  /\  ( w `  u
)  e.  ( v  i^i  [_ u  /  k ]_ S ) ) ) )
102 elin 3617 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( U. ( Xt_ `  F )  i^i  X_ k  e.  A  S )  <->  ( w  e.  U. ( Xt_ `  F
)  /\  w  e.  X_ k  e.  A  S
) )
10382eleq2d 2514 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( w  e.  ( U. ( Xt_ `  F
)  i^i  X_ k  e.  A  S )  <->  w  e.  U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) ) )
104102, 103syl5bbr 263 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( w  e. 
U. ( Xt_ `  F
)  /\  w  e.  X_ k  e.  A  S
)  <->  w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) ) ) )
105104anbi1d 711 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( w  e.  U. ( Xt_ `  F )  /\  w  e.  X_ k  e.  A  S )  /\  (
w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) )  <->  ( w  e.  U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) )  /\  ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) ) ) )
106101, 105sylan9bbr 707 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  A )  ->  (
( ( w  e. 
U. ( Xt_ `  F
)  /\  ( w `  u )  e.  v )  /\  w  e.  X_ k  e.  A  S )  <->  ( w  e.  U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) )  /\  ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) ) ) )
107106abbidv 2569 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  A )  ->  { w  |  ( ( w  e.  U. ( Xt_ `  F )  /\  (
w `  u )  e.  v )  /\  w  e.  X_ k  e.  A  S ) }  =  { w  |  (
w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  /\  (
w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) ) } )
108 eqid 2451 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )  =  ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) )
109108mptpreima 5328 . . . . . . . . . . . . . . . . . . 19  |-  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
)  =  { w  e.  U. ( Xt_ `  F
)  |  ( w `
 u )  e.  v }
110 df-rab 2746 . . . . . . . . . . . . . . . . . . 19  |-  { w  e.  U. ( Xt_ `  F
)  |  ( w `
 u )  e.  v }  =  {
w  |  ( w  e.  U. ( Xt_ `  F )  /\  (
w `  u )  e.  v ) }
111109, 110eqtr2i 2474 . . . . . . . . . . . . . . . . . 18  |-  { w  |  ( w  e. 
U. ( Xt_ `  F
)  /\  ( w `  u )  e.  v ) }  =  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )
112 abid2 2573 . . . . . . . . . . . . . . . . . 18  |-  { w  |  w  e.  X_ k  e.  A  S }  =  X_ k  e.  A  S
113111, 112ineq12i 3632 . . . . . . . . . . . . . . . . 17  |-  ( { w  |  ( w  e.  U. ( Xt_ `  F )  /\  (
w `  u )  e.  v ) }  i^i  { w  |  w  e.  X_ k  e.  A  S } )  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S )
114 inab 3711 . . . . . . . . . . . . . . . . 17  |-  ( { w  |  ( w  e.  U. ( Xt_ `  F )  /\  (
w `  u )  e.  v ) }  i^i  { w  |  w  e.  X_ k  e.  A  S } )  =  {
w  |  ( ( w  e.  U. ( Xt_ `  F )  /\  ( w `  u
)  e.  v )  /\  w  e.  X_ k  e.  A  S
) }
115113, 114eqtr3i 2475 . . . . . . . . . . . . . . . 16  |-  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  =  { w  |  ( ( w  e.  U. ( Xt_ `  F )  /\  ( w `  u )  e.  v )  /\  w  e.  X_ k  e.  A  S ) }
116 eqid 2451 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) )  =  ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
117116mptpreima 5328 . . . . . . . . . . . . . . . . 17  |-  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( v  i^i  [_ u  /  k ]_ S ) )  =  { w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |  ( w `  u
)  e.  ( v  i^i  [_ u  /  k ]_ S ) }
118 df-rab 2746 . . . . . . . . . . . . . . . . 17  |-  { w  e.  U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) )  |  ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) }  =  {
w  |  ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  /\  ( w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) ) }
119117, 118eqtri 2473 . . . . . . . . . . . . . . . 16  |-  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( v  i^i  [_ u  /  k ]_ S ) )  =  { w  |  ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  /\  (
w `  u )  e.  ( v  i^i  [_ u  /  k ]_ S
) ) }
120107, 115, 1193eqtr4g 2510 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  A )  ->  (
( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S )  =  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " (
v  i^i  [_ u  / 
k ]_ S ) ) )
121120eqeq2d 2461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  A )  ->  (
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" ( v  i^i  [_ u  /  k ]_ S ) ) ) )
122121rexbidv 2901 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  A )  ->  ( E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  E. v  e.  ( F `
 u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" ( v  i^i  [_ u  /  k ]_ S ) ) ) )
123 ineq1 3627 . . . . . . . . . . . . . . . 16  |-  ( v  =  y  ->  (
v  i^i  [_ u  / 
k ]_ S )  =  ( y  i^i  [_ u  /  k ]_ S
) )
124123imaeq2d 5168 . . . . . . . . . . . . . . 15  |-  ( v  =  y  ->  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " (
v  i^i  [_ u  / 
k ]_ S ) )  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" ( y  i^i  [_ u  /  k ]_ S ) ) )
125124eqeq2d 2461 . . . . . . . . . . . . . 14  |-  ( v  =  y  ->  (
x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( v  i^i  [_ u  /  k ]_ S ) )  <->  x  =  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " (
y  i^i  [_ u  / 
k ]_ S ) ) ) )
126125cbvrexv 3020 . . . . . . . . . . . . 13  |-  ( E. v  e.  ( F `
 u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" ( v  i^i  [_ u  /  k ]_ S ) )  <->  E. y  e.  ( F `  u
) x  =  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " (
y  i^i  [_ u  / 
k ]_ S ) ) )
127122, 126syl6bb 265 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  A )  ->  ( E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  E. y  e.  ( F `
 u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" ( y  i^i  [_ u  /  k ]_ S ) ) ) )
128 vex 3048 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
129128inex1 4544 . . . . . . . . . . . . . 14  |-  ( y  i^i  [_ u  /  k ]_ S )  e.  _V
130129a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  A )  /\  y  e.  ( F `  u
) )  ->  (
y  i^i  [_ u  / 
k ]_ S )  e. 
_V )
131 ovex 6318 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )t  [_ u  /  k ]_ S
)  e.  _V
132 nfcv 2592 . . . . . . . . . . . . . . . . . 18  |-  F/_ k
u
133 nfcv 2592 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k
( F `  u
)
134133, 53, 88nfov 6316 . . . . . . . . . . . . . . . . . 18  |-  F/_ k
( ( F `  u )t  [_ u  /  k ]_ S )
135 fveq2 5865 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  u  ->  ( F `  k )  =  ( F `  u ) )
136135, 91oveq12d 6308 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  u  ->  (
( F `  k
)t 
S )  =  ( ( F `  u
)t  [_ u  /  k ]_ S ) )
137132, 134, 136, 65fvmptf 5966 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  A  /\  ( ( F `  u )t  [_ u  /  k ]_ S )  e.  _V )  ->  ( ( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u
)  =  ( ( F `  u )t  [_ u  /  k ]_ S
) )
138131, 137mpan2 677 . . . . . . . . . . . . . . . 16  |-  ( u  e.  A  ->  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u )  =  ( ( F `  u
)t  [_ u  /  k ]_ S ) )
139138adantl 468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  A )  ->  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u )  =  ( ( F `  u
)t  [_ u  /  k ]_ S ) )
140139eleq2d 2514 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  A )  ->  (
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  <->  v  e.  ( ( F `  u )t  [_ u  /  k ]_ S ) ) )
141 nfv 1761 . . . . . . . . . . . . . . . . 17  |-  F/ k ( ph  /\  u  e.  A )
142 nfcsb1v 3379 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ u  /  k ]_ W
14388, 142nfel 2604 . . . . . . . . . . . . . . . . 17  |-  F/ k
[_ u  /  k ]_ S  e.  [_ u  /  k ]_ W
144141, 143nfim 2003 . . . . . . . . . . . . . . . 16  |-  F/ k ( ( ph  /\  u  e.  A )  ->  [_ u  /  k ]_ S  e.  [_ u  /  k ]_ W
)
145 eleq1 2517 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  u  ->  (
k  e.  A  <->  u  e.  A ) )
146145anbi2d 710 . . . . . . . . . . . . . . . . 17  |-  ( k  =  u  ->  (
( ph  /\  k  e.  A )  <->  ( ph  /\  u  e.  A ) ) )
147 csbeq1a 3372 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  u  ->  W  =  [_ u  /  k ]_ W )
14891, 147eleq12d 2523 . . . . . . . . . . . . . . . . 17  |-  ( k  =  u  ->  ( S  e.  W  <->  [_ u  / 
k ]_ S  e.  [_ u  /  k ]_ W
) )
149146, 148imbi12d 322 . . . . . . . . . . . . . . . 16  |-  ( k  =  u  ->  (
( ( ph  /\  k  e.  A )  ->  S  e.  W )  <-> 
( ( ph  /\  u  e.  A )  ->  [_ u  /  k ]_ S  e.  [_ u  /  k ]_ W
) ) )
150144, 149, 13chvar 2106 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  A )  ->  [_ u  /  k ]_ S  e.  [_ u  /  k ]_ W )
151 elrest 15326 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  u
)  e.  _V  /\  [_ u  /  k ]_ S  e.  [_ u  / 
k ]_ W )  -> 
( v  e.  ( ( F `  u
)t  [_ u  /  k ]_ S )  <->  E. y  e.  ( F `  u
) v  =  ( y  i^i  [_ u  /  k ]_ S
) ) )
1524, 150, 151sylancr 669 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  A )  ->  (
v  e.  ( ( F `  u )t  [_ u  /  k ]_ S
)  <->  E. y  e.  ( F `  u ) v  =  ( y  i^i  [_ u  /  k ]_ S ) ) )
153140, 152bitrd 257 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  A )  ->  (
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  <->  E. y  e.  ( F `  u
) v  =  ( y  i^i  [_ u  /  k ]_ S
) ) )
154 imaeq2 5164 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  i^i  [_ u  /  k ]_ S )  ->  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " v
)  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( y  i^i  [_ u  /  k ]_ S ) ) )
155154eqeq2d 2461 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  i^i  [_ u  /  k ]_ S )  ->  (
x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v )  <-> 
x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( y  i^i  [_ u  /  k ]_ S ) ) ) )
156155adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  A )  /\  v  =  ( y  i^i  [_ u  /  k ]_ S ) )  -> 
( x  =  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " v
)  <->  x  =  ( `' ( w  e. 
U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) 
|->  ( w `  u
) ) " (
y  i^i  [_ u  / 
k ]_ S ) ) ) )
157130, 153, 156rexxfr2d 4617 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  A )  ->  ( E. v  e.  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
)  <->  E. y  e.  ( F `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " ( y  i^i  [_ u  /  k ]_ S ) ) ) )
158127, 157bitr4d 260 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  A )  ->  ( E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  E. v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
) ) )
159158rexbidva 2898 . . . . . . . . . 10  |-  ( ph  ->  ( E. u  e.  A  E. v  e.  ( F `  u
) x  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S )  <->  E. u  e.  A  E. v  e.  ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) )
160159abbidv 2569 . . . . . . . . 9  |-  ( ph  ->  { x  |  E. u  e.  A  E. v  e.  ( F `  u ) x  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v )  i^i  X_ k  e.  A  S ) }  =  { x  |  E. u  e.  A  E. v  e.  ( (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
) } )
161 eqid 2451 . . . . . . . . . . 11  |-  ( x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) )  |->  ( x  i^i  X_ k  e.  A  S ) )  =  ( x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) 
|->  ( x  i^i  X_ k  e.  A  S )
)
162161rnmpt 5080 . . . . . . . . . 10  |-  ran  (
x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  |->  ( x  i^i  X_ k  e.  A  S )
)  =  { y  |  E. x  e. 
ran  ( u  e.  A ,  v  e.  ( F `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v ) ) y  =  ( x  i^i  X_ k  e.  A  S ) }
163 nfre1 2848 . . . . . . . . . . 11  |-  F/ x E. x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) y  =  ( x  i^i  X_ k  e.  A  S )
164 nfv 1761 . . . . . . . . . . 11  |-  F/ y E. u  e.  A  E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )
16527mptex 6136 . . . . . . . . . . . . . . . 16  |-  ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )  e.  _V
166165cnvex 6740 . . . . . . . . . . . . . . 15  |-  `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) )  e.  _V
167 imaexg 6730 . . . . . . . . . . . . . . 15  |-  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) )  e.  _V  ->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  e. 
_V )
168166, 167ax-mp 5 . . . . . . . . . . . . . 14  |-  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
)  e.  _V
169168rgen2w 2750 . . . . . . . . . . . . 13  |-  A. u  e.  A  A. v  e.  ( F `  u
) ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v )  e.  _V
170 ineq1 3627 . . . . . . . . . . . . . . 15  |-  ( x  =  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v )  ->  ( x  i^i  X_ k  e.  A  S )  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S ) )
171170eqeq2d 2461 . . . . . . . . . . . . . 14  |-  ( x  =  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v )  ->  ( y  =  ( x  i^i  X_ k  e.  A  S )  <->  y  =  ( ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
)  i^i  X_ k  e.  A  S ) ) )
1726, 171rexrnmpt2 6412 . . . . . . . . . . . . 13  |-  ( A. u  e.  A  A. v  e.  ( F `  u ) ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
)  e.  _V  ->  ( E. x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) y  =  ( x  i^i  X_ k  e.  A  S )  <->  E. u  e.  A  E. v  e.  ( F `  u
) y  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S ) ) )
173169, 172ax-mp 5 . . . . . . . . . . . 12  |-  ( E. x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) y  =  ( x  i^i  X_ k  e.  A  S )  <->  E. u  e.  A  E. v  e.  ( F `  u
) y  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S ) )
174 eqeq1 2455 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  (
y  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  x  =  ( ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
)  i^i  X_ k  e.  A  S ) ) )
1751742rexbidv 2908 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( E. u  e.  A  E. v  e.  ( F `  u )
y  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S )  <->  E. u  e.  A  E. v  e.  ( F `  u ) x  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v )  i^i  X_ k  e.  A  S ) ) )
176173, 175syl5bb 261 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( E. x  e.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) y  =  ( x  i^i  X_ k  e.  A  S )  <->  E. u  e.  A  E. v  e.  ( F `  u
) x  =  ( ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v )  i^i  X_ k  e.  A  S ) ) )
177163, 164, 176cbvab 2574 . . . . . . . . . 10  |-  { y  |  E. x  e. 
ran  ( u  e.  A ,  v  e.  ( F `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v ) ) y  =  ( x  i^i  X_ k  e.  A  S ) }  =  { x  |  E. u  e.  A  E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S ) }
178162, 177eqtri 2473 . . . . . . . . 9  |-  ran  (
x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  |->  ( x  i^i  X_ k  e.  A  S )
)  =  { x  |  E. u  e.  A  E. v  e.  ( F `  u )
x  =  ( ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v )  i^i  X_ k  e.  A  S ) }
179 eqid 2451 . . . . . . . . . 10  |-  ( u  e.  A ,  v  e.  ( ( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" v ) )  =  ( u  e.  A ,  v  e.  ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  u ) 
|->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
) )
180179rnmpt2 6406 . . . . . . . . 9  |-  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) )  =  { x  |  E. u  e.  A  E. v  e.  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u ) x  =  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
) }
181160, 178, 1803eqtr4g 2510 . . . . . . . 8  |-  ( ph  ->  ran  ( x  e. 
ran  ( u  e.  A ,  v  e.  ( F `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `  u ) ) " v ) )  |->  ( x  i^i  X_ k  e.  A  S ) )  =  ran  ( u  e.  A ,  v  e.  ( ( k  e.  A  |->  ( ( F `
 k )t  S ) ) `  u ) 
|->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) 
|->  ( w `  u
) ) " v
) ) )
18284, 181uneq12d 3589 . . . . . . 7  |-  ( ph  ->  ( ran  ( x  e.  { U. ( Xt_ `  F ) } 
|->  ( x  i^i  X_ k  e.  A  S )
)  u.  ran  (
x  e.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) )  |->  ( x  i^i  X_ k  e.  A  S )
) )  =  ( { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) }  u.  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) )
18322, 182syl5eq 2497 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) ) )  |->  ( x  i^i  X_ k  e.  A  S )
)  =  ( { U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) }  u.  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) )
18418, 183eqtrd 2485 . . . . 5  |-  ( ph  ->  ( ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) )t  X_ k  e.  A  S
)  =  ( { U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) }  u.  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) )
185184fveq2d 5869 . . . 4  |-  ( ph  ->  ( fi `  (
( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) ) )t  X_ k  e.  A  S )
)  =  ( fi
`  ( { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) }  u.  ran  ( u  e.  A ,  v  e.  ( ( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" v ) ) ) ) )
1861, 185syl5eqr 2499 . . 3  |-  ( ph  ->  ( ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) ) )t  X_ k  e.  A  S )  =  ( fi `  ( { U. ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) ) }  u.  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) ) )
187186fveq2d 5869 . 2  |-  ( ph  ->  ( topGen `  ( ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) )t  X_ k  e.  A  S ) )  =  ( topGen `  ( fi `  ( { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) ) }  u.  ran  ( u  e.  A ,  v  e.  (
( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) ) ) )
188 eqid 2451 . . . . . 6  |-  U. ( Xt_ `  F )  = 
U. ( Xt_ `  F
)
18972, 188, 6ptval2 20616 . . . . 5  |-  ( ( A  e.  V  /\  F : A --> Top )  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) ) ) ) )
1903, 35, 189syl2anc 667 . . . 4  |-  ( ph  ->  ( Xt_ `  F
)  =  ( topGen `  ( fi `  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) ) ) ) )
191190oveq1d 6305 . . 3  |-  ( ph  ->  ( ( Xt_ `  F
)t  X_ k  e.  A  S )  =  ( ( topGen `  ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F ) 
|->  ( w `  u
) ) " v
) ) ) ) )t  X_ k  e.  A  S ) )
192 fvex 5875 . . . 4  |-  ( fi
`  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) )  e.  _V
193 tgrest 20175 . . . 4  |-  ( ( ( fi `  ( { U. ( Xt_ `  F
) }  u.  ran  ( u  e.  A ,  v  e.  ( F `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  F )  |->  ( w `
 u ) )
" v ) ) ) )  e.  _V  /\  X_ k  e.  A  S  e.  _V )  ->  ( topGen `  ( ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) )t  X_ k  e.  A  S ) )  =  ( ( topGen `  ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) ) )t  X_ k  e.  A  S ) )
194192, 16, 193sylancr 669 . . 3  |-  ( ph  ->  ( topGen `  ( ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) )t  X_ k  e.  A  S ) )  =  ( ( topGen `  ( fi `  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) ) )t  X_ k  e.  A  S ) )
195191, 194eqtr4d 2488 . 2  |-  ( ph  ->  ( ( Xt_ `  F
)t  X_ k  e.  A  S )  =  (
topGen `  ( ( fi
`  ( { U. ( Xt_ `  F ) }  u.  ran  (
u  e.  A , 
v  e.  ( F `
 u )  |->  ( `' ( w  e. 
U. ( Xt_ `  F
)  |->  ( w `  u ) ) "
v ) ) ) )t  X_ k  e.  A  S ) ) )
196 eqid 2451 . . . 4  |-  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  =  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )
19779, 196, 179ptval2 20616 . . 3  |-  ( ( A  e.  V  /\  ( k  e.  A  |->  ( ( F `  k )t  S ) ) : A --> Top )  ->  ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  =  (
topGen `  ( fi `  ( { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) }  u.  ran  (
u  e.  A , 
v  e.  ( ( k  e.  A  |->  ( ( F `  k
)t 
S ) ) `  u )  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) )  |->  ( w `  u ) ) " v ) ) ) ) ) )
1983, 78, 197syl2anc 667 . 2  |-  ( ph  ->  ( Xt_ `  (
k  e.  A  |->  ( ( F `  k
)t 
S ) ) )  =  ( topGen `  ( fi `  ( { U. ( Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) }  u.  ran  ( u  e.  A ,  v  e.  ( ( k  e.  A  |->  ( ( F `  k )t  S ) ) `  u
)  |->  ( `' ( w  e.  U. ( Xt_ `  ( k  e.  A  |->  ( ( F `
 k )t  S ) ) )  |->  ( w `
 u ) )
" v ) ) ) ) ) )
199187, 195, 1983eqtr4d 2495 1  |-  ( ph  ->  ( ( Xt_ `  F
)t  X_ k  e.  A  S )  =  (
Xt_ `  ( k  e.  A  |->  ( ( F `  k )t  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   {cab 2437   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045   [_csb 3363    u. cun 3402    i^i cin 3403    C_ wss 3404   {csn 3968   <.cop 3974   U.cuni 4198    |-> cmpt 4461   `'ccnv 4833   ran crn 4835   "cima 4837    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   X_cixp 7522   ficfi 7924   ↾t crest 15319   topGenctg 15336   Xt_cpt 15337   Topctop 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-ixp 7523  df-en 7570  df-dom 7571  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-pt 15343  df-top 19921  df-bases 19922  df-topon 19923
This theorem is referenced by:  poimirlem30  31970
  Copyright terms: Public domain W3C validator