Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnrmi | Structured version Visualization version GIF version |
Description: A subspace of a completely normal space is normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
cnrmi | ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | restin 20780 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) |
3 | inss2 3796 | . . . . 5 ⊢ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
4 | inex1g 4729 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ V) | |
5 | elpwg 4116 | . . . . . 6 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ V → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 ↔ (𝐴 ∩ ∪ 𝐽) ⊆ ∪ 𝐽)) |
7 | 3, 6 | mpbiri 247 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽) |
9 | 1 | iscnrm 20937 | . . . . 5 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm)) |
10 | 9 | simprbi 479 | . . . 4 ⊢ (𝐽 ∈ CNrm → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → ∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm) |
12 | oveq2 6557 | . . . . 5 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → (𝐽 ↾t 𝑥) = (𝐽 ↾t (𝐴 ∩ ∪ 𝐽))) | |
13 | 12 | eleq1d 2672 | . . . 4 ⊢ (𝑥 = (𝐴 ∩ ∪ 𝐽) → ((𝐽 ↾t 𝑥) ∈ Nrm ↔ (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
14 | 13 | rspcv 3278 | . . 3 ⊢ ((𝐴 ∩ ∪ 𝐽) ∈ 𝒫 ∪ 𝐽 → (∀𝑥 ∈ 𝒫 ∪ 𝐽(𝐽 ↾t 𝑥) ∈ Nrm → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm)) |
15 | 8, 11, 14 | sylc 63 | . 2 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t (𝐴 ∩ ∪ 𝐽)) ∈ Nrm) |
16 | 2, 15 | eqeltrd 2688 | 1 ⊢ ((𝐽 ∈ CNrm ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Nrm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ∩ cin 3539 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 (class class class)co 6549 ↾t crest 15904 Topctop 20517 Nrmcnrm 20924 CNrmccnrm 20925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-rest 15906 df-cnrm 20932 |
This theorem is referenced by: cnrmnrm 20975 restcnrm 20976 |
Copyright terms: Public domain | W3C validator |