MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elkgen Structured version   Visualization version   GIF version

Theorem elkgen 21149
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
elkgen (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑘,𝑋

Proof of Theorem elkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgenval 21148 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
21eleq2d 2673 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))}))
3 ineq1 3769 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
43eleq1d 2672 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑘) ∈ (𝐽t 𝑘) ↔ (𝐴𝑘) ∈ (𝐽t 𝑘)))
54imbi2d 329 . . . . 5 (𝑥 = 𝐴 → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
65ralbidv 2969 . . . 4 (𝑥 = 𝐴 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
76elrab 3331 . . 3 (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
8 toponmax 20543 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
9 elpw2g 4754 . . . . 5 (𝑋𝐽 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
108, 9syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1110anbi1d 737 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
127, 11syl5bb 271 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
132, 12bitrd 267 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cin 3539  wss 3540  𝒫 cpw 4108  cfv 5804  (class class class)co 6549  t crest 15904  TopOnctopon 20518  Compccmp 20999  𝑘Genckgen 21146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-top 20521  df-topon 20523  df-kgen 21147
This theorem is referenced by:  kgeni  21150  kgentopon  21151  kgenss  21156  kgenidm  21160  iskgen3  21162  kgen2ss  21168  kgencn  21169  kgencn3  21171  txkgen  21265
  Copyright terms: Public domain W3C validator