MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgeni Structured version   Unicode version

Theorem kgeni 19010
Description: Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgeni  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  K ) )

Proof of Theorem kgeni
Dummy variables  y  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 3557 . . . . 5  |-  ( ( A  i^i  K )  i^i  U. J )  =  ( A  i^i  ( K  i^i  U. J
) )
2 in32 3559 . . . . 5  |-  ( ( A  i^i  K )  i^i  U. J )  =  ( ( A  i^i  U. J )  i^i  K )
31, 2eqtr3i 2463 . . . 4  |-  ( A  i^i  ( K  i^i  U. J ) )  =  ( ( A  i^i  U. J )  i^i  K
)
4 df-kgen 19007 . . . . . . . . . . . 12  |- 𝑘Gen  =  (
j  e.  Top  |->  { x  e.  ~P U. j  |  A. y  e.  ~P  U. j ( ( jt  y )  e. 
Comp  ->  ( x  i^i  y )  e.  ( jt  y ) ) } )
54dmmptss 5331 . . . . . . . . . . 11  |-  dom 𝑘Gen  C_  Top
6 elfvdm 5713 . . . . . . . . . . 11  |-  ( A  e.  (𝑘Gen `  J )  ->  J  e.  dom 𝑘Gen )
75, 6sseldi 3351 . . . . . . . . . 10  |-  ( A  e.  (𝑘Gen `  J )  ->  J  e.  Top )
87adantr 462 . . . . . . . . 9  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  J  e.  Top )
9 eqid 2441 . . . . . . . . . 10  |-  U. J  =  U. J
109toptopon 18438 . . . . . . . . 9  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
118, 10sylib 196 . . . . . . . 8  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  J  e.  (TopOn `  U. J ) )
12 simpl 454 . . . . . . . 8  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A  e.  (𝑘Gen `  J
) )
13 elkgen 19009 . . . . . . . . 9  |-  ( J  e.  (TopOn `  U. J )  ->  ( A  e.  (𝑘Gen `  J
)  <->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) ) )
1413biimpa 481 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  A  e.  (𝑘Gen `  J ) )  ->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) )
1511, 12, 14syl2anc 656 . . . . . . 7  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  C_  U. J  /\  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) ) )
1615simpld 456 . . . . . 6  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A  C_  U. J )
17 df-ss 3339 . . . . . 6  |-  ( A 
C_  U. J  <->  ( A  i^i  U. J )  =  A )
1816, 17sylib 196 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  U. J )  =  A )
1918ineq1d 3548 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( ( A  i^i  U. J )  i^i  K
)  =  ( A  i^i  K ) )
203, 19syl5eq 2485 . . 3  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  ( K  i^i  U. J ) )  =  ( A  i^i  K ) )
21 inss2 3568 . . . . 5  |-  ( K  i^i  U. J ) 
C_  U. J
22 cmptop 18898 . . . . . . . 8  |-  ( ( Jt  K )  e.  Comp  -> 
( Jt  K )  e.  Top )
2322adantl 463 . . . . . . 7  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  e.  Top )
24 restrcl 18661 . . . . . . . 8  |-  ( ( Jt  K )  e.  Top  ->  ( J  e.  _V  /\  K  e.  _V )
)
2524simprd 460 . . . . . . 7  |-  ( ( Jt  K )  e.  Top  ->  K  e.  _V )
2623, 25syl 16 . . . . . 6  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  K  e.  _V )
27 inex1g 4432 . . . . . 6  |-  ( K  e.  _V  ->  ( K  i^i  U. J )  e.  _V )
28 elpwg 3865 . . . . . 6  |-  ( ( K  i^i  U. J
)  e.  _V  ->  ( ( K  i^i  U. J )  e.  ~P U. J  <->  ( K  i^i  U. J )  C_  U. J
) )
2926, 27, 283syl 20 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( ( K  i^i  U. J )  e.  ~P U. J  <->  ( K  i^i  U. J )  C_  U. J
) )
3021, 29mpbiri 233 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( K  i^i  U. J )  e.  ~P U. J )
3115simprd 460 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  A. y  e.  ~P  U. J ( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) ) )
329restin 18670 . . . . . 6  |-  ( ( J  e.  Top  /\  K  e.  _V )  ->  ( Jt  K )  =  ( Jt  ( K  i^i  U. J ) ) )
338, 26, 32syl2anc 656 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  =  ( Jt  ( K  i^i  U. J ) ) )
34 simpr 458 . . . . 5  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  K )  e.  Comp )
3533, 34eqeltrrd 2516 . . . 4  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( Jt  ( K  i^i  U. J ) )  e. 
Comp )
36 oveq2 6098 . . . . . . 7  |-  ( y  =  ( K  i^i  U. J )  ->  ( Jt  y )  =  ( Jt  ( K  i^i  U. J ) ) )
3736eleq1d 2507 . . . . . 6  |-  ( y  =  ( K  i^i  U. J )  ->  (
( Jt  y )  e. 
Comp 
<->  ( Jt  ( K  i^i  U. J ) )  e. 
Comp ) )
38 ineq2 3543 . . . . . . 7  |-  ( y  =  ( K  i^i  U. J )  ->  ( A  i^i  y )  =  ( A  i^i  ( K  i^i  U. J ) ) )
3938, 36eleq12d 2509 . . . . . 6  |-  ( y  =  ( K  i^i  U. J )  ->  (
( A  i^i  y
)  e.  ( Jt  y )  <->  ( A  i^i  ( K  i^i  U. J
) )  e.  ( Jt  ( K  i^i  U. J ) ) ) )
4037, 39imbi12d 320 . . . . 5  |-  ( y  =  ( K  i^i  U. J )  ->  (
( ( Jt  y )  e.  Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) )  <-> 
( ( Jt  ( K  i^i  U. J ) )  e.  Comp  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) ) ) )
4140rspcv 3066 . . . 4  |-  ( ( K  i^i  U. J
)  e.  ~P U. J  ->  ( A. y  e.  ~P  U. J ( ( Jt  y )  e. 
Comp  ->  ( A  i^i  y )  e.  ( Jt  y ) )  -> 
( ( Jt  ( K  i^i  U. J ) )  e.  Comp  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) ) ) )
4230, 31, 35, 41syl3c 61 . . 3  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  ( K  i^i  U. J ) )  e.  ( Jt  ( K  i^i  U. J
) ) )
4320, 42eqeltrrd 2516 . 2  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  ( K  i^i  U. J
) ) )
4443, 33eleqtrrd 2518 1  |-  ( ( A  e.  (𝑘Gen `  J
)  /\  ( Jt  K
)  e.  Comp )  ->  ( A  i^i  K
)  e.  ( Jt  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970    i^i cin 3324    C_ wss 3325   ~Pcpw 3857   U.cuni 4088   dom cdm 4836   ` cfv 5415  (class class class)co 6090   ↾t crest 14355   Topctop 18398  TopOnctopon 18399   Compccmp 18889  𝑘Genckgen 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-rest 14357  df-top 18403  df-topon 18406  df-cmp 18890  df-kgen 19007
This theorem is referenced by:  kgentopon  19011  kgencmp  19018  kgenidm  19020  llycmpkgen2  19023  1stckgen  19027  kgencn3  19031  txkgen  19125
  Copyright terms: Public domain W3C validator