MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txopn Structured version   Unicode version

Theorem txopn 19866
Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txopn  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( R 
tX  S ) )

Proof of Theorem txopn
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . . 6  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
21txbasex 19830 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e. 
_V )
3 bastg 19262 . . . . 5  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  _V  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  C_  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
42, 3syl 16 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  C_  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
54adantr 465 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  C_  ( topGen `
 ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
6 eqid 2467 . . . . . 6  |-  ( A  X.  B )  =  ( A  X.  B
)
7 xpeq1 5013 . . . . . . . 8  |-  ( u  =  A  ->  (
u  X.  v )  =  ( A  X.  v ) )
87eqeq2d 2481 . . . . . . 7  |-  ( u  =  A  ->  (
( A  X.  B
)  =  ( u  X.  v )  <->  ( A  X.  B )  =  ( A  X.  v ) ) )
9 xpeq2 5014 . . . . . . . 8  |-  ( v  =  B  ->  ( A  X.  v )  =  ( A  X.  B
) )
109eqeq2d 2481 . . . . . . 7  |-  ( v  =  B  ->  (
( A  X.  B
)  =  ( A  X.  v )  <->  ( A  X.  B )  =  ( A  X.  B ) ) )
118, 10rspc2ev 3225 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S  /\  ( A  X.  B
)  =  ( A  X.  B ) )  ->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) )
126, 11mp3an3 1313 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  ->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) )
13 xpexg 6586 . . . . . 6  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A  X.  B
)  e.  _V )
14 eqid 2467 . . . . . . 7  |-  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  =  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )
1514elrnmpt2g 6398 . . . . . 6  |-  ( ( A  X.  B )  e.  _V  ->  (
( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  <->  E. u  e.  R  E. v  e.  S  ( A  X.  B
)  =  ( u  X.  v ) ) )
1613, 15syl 16 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( ( A  X.  B )  e.  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  <->  E. u  e.  R  E. v  e.  S  ( A  X.  B )  =  ( u  X.  v ) ) )
1712, 16mpbird 232 . . . 4  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
1817adantl 466 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
195, 18sseldd 3505 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
201txval 19828 . . 3  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
2120adantr 465 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
2219, 21eleqtrrd 2558 1  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A  X.  B
)  e.  ( R 
tX  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    C_ wss 3476    X. cxp 4997   ran crn 5000   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   topGenctg 14693    tX ctx 19824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-topgen 14699  df-tx 19826
This theorem is referenced by:  txcld  19867  txbasval  19870  neitx  19871  tx1cn  19873  tx2cn  19874  txlly  19900  txnlly  19901  txhaus  19911  txlm  19912  tx1stc  19914  txkgen  19916  xkococnlem  19923  cxpcn3  22878  cvmlift2lem11  28426  cvmlift2lem12  28427
  Copyright terms: Public domain W3C validator