MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococnlem Structured version   Visualization version   GIF version

Theorem xkococnlem 21272
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
xkococn.1 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
xkococn.s (𝜑𝑆 ∈ 𝑛-Locally Comp)
xkococn.k (𝜑𝐾 𝑅)
xkococn.c (𝜑 → (𝑅t 𝐾) ∈ Comp)
xkococn.v (𝜑𝑉𝑇)
xkococn.a (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
xkococn.b (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
xkococn.i (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
Assertion
Ref Expression
xkococnlem (𝜑 → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑓,𝑔,,𝑧,𝑅   𝑆,𝑓,𝑔,𝑧   ,𝐾,𝑧   𝑇,𝑓,𝑔,,𝑧   𝑧,𝐹   ,𝑉,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,)   𝐴(𝑓,𝑔,)   𝐵(𝑓,𝑔,)   𝑆()   𝐹(𝑓,𝑔,)   𝐾(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem xkococnlem
Dummy variables 𝑘 𝑎 𝑠 𝑢 𝑣 𝑤 𝑥 𝑦 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkococn.b . . . 4 (𝜑𝐵 ∈ (𝑅 Cn 𝑆))
2 xkococn.c . . . 4 (𝜑 → (𝑅t 𝐾) ∈ Comp)
3 imacmp 21010 . . . 4 ((𝐵 ∈ (𝑅 Cn 𝑆) ∧ (𝑅t 𝐾) ∈ Comp) → (𝑆t (𝐵𝐾)) ∈ Comp)
41, 2, 3syl2anc 691 . . 3 (𝜑 → (𝑆t (𝐵𝐾)) ∈ Comp)
5 xkococn.s . . . . . . . . 9 (𝜑𝑆 ∈ 𝑛-Locally Comp)
65adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑆 ∈ 𝑛-Locally Comp)
7 xkococn.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑆 Cn 𝑇))
8 xkococn.v . . . . . . . . . 10 (𝜑𝑉𝑇)
9 cnima 20879 . . . . . . . . . 10 ((𝐴 ∈ (𝑆 Cn 𝑇) ∧ 𝑉𝑇) → (𝐴𝑉) ∈ 𝑆)
107, 8, 9syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐴𝑉) ∈ 𝑆)
1110adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → (𝐴𝑉) ∈ 𝑆)
12 imaco 5557 . . . . . . . . . . 11 ((𝐴𝐵) “ 𝐾) = (𝐴 “ (𝐵𝐾))
13 xkococn.i . . . . . . . . . . 11 (𝜑 → ((𝐴𝐵) “ 𝐾) ⊆ 𝑉)
1412, 13syl5eqssr 3613 . . . . . . . . . 10 (𝜑 → (𝐴 “ (𝐵𝐾)) ⊆ 𝑉)
15 eqid 2610 . . . . . . . . . . . . 13 𝑆 = 𝑆
16 eqid 2610 . . . . . . . . . . . . 13 𝑇 = 𝑇
1715, 16cnf 20860 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝐴: 𝑆 𝑇)
18 ffun 5961 . . . . . . . . . . . 12 (𝐴: 𝑆 𝑇 → Fun 𝐴)
197, 17, 183syl 18 . . . . . . . . . . 11 (𝜑 → Fun 𝐴)
20 imassrn 5396 . . . . . . . . . . . . 13 (𝐵𝐾) ⊆ ran 𝐵
21 eqid 2610 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
2221, 15cnf 20860 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝐵: 𝑅 𝑆)
23 frn 5966 . . . . . . . . . . . . . 14 (𝐵: 𝑅 𝑆 → ran 𝐵 𝑆)
241, 22, 233syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝐵 𝑆)
2520, 24syl5ss 3579 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ⊆ 𝑆)
26 fdm 5964 . . . . . . . . . . . . 13 (𝐴: 𝑆 𝑇 → dom 𝐴 = 𝑆)
277, 17, 263syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐴 = 𝑆)
2825, 27sseqtr4d 3605 . . . . . . . . . . 11 (𝜑 → (𝐵𝐾) ⊆ dom 𝐴)
29 funimass3 6241 . . . . . . . . . . 11 ((Fun 𝐴 ∧ (𝐵𝐾) ⊆ dom 𝐴) → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3019, 28, 29syl2anc 691 . . . . . . . . . 10 (𝜑 → ((𝐴 “ (𝐵𝐾)) ⊆ 𝑉 ↔ (𝐵𝐾) ⊆ (𝐴𝑉)))
3114, 30mpbid 221 . . . . . . . . 9 (𝜑 → (𝐵𝐾) ⊆ (𝐴𝑉))
3231sselda 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐾)) → 𝑥 ∈ (𝐴𝑉))
33 nlly2i 21089 . . . . . . . 8 ((𝑆 ∈ 𝑛-Locally Comp ∧ (𝐴𝑉) ∈ 𝑆𝑥 ∈ (𝐴𝑉)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
346, 11, 32, 33syl3anc 1318 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))
35 nllytop 21086 . . . . . . . . . . . . 13 (𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top)
365, 35syl 17 . . . . . . . . . . . 12 (𝜑𝑆 ∈ Top)
3736ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
38 imaexg 6995 . . . . . . . . . . . . 13 (𝐵 ∈ (𝑅 Cn 𝑆) → (𝐵𝐾) ∈ V)
391, 38syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐾) ∈ V)
4039ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐵𝐾) ∈ V)
41 simprl 790 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑆)
42 elrestr 15912 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ (𝐵𝐾) ∈ V ∧ 𝑢𝑆) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
4337, 40, 41, 42syl3anc 1318 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)))
44 simprr1 1102 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥𝑢)
45 simpllr 795 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝐵𝐾))
4644, 45elind 3760 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑥 ∈ (𝑢 ∩ (𝐵𝐾)))
47 inss1 3795 . . . . . . . . . . . 12 (𝑢 ∩ (𝐵𝐾)) ⊆ 𝑢
48 elpwi 4117 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 (𝐴𝑉) → 𝑠 ⊆ (𝐴𝑉))
4948ad2antlr 759 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 ⊆ (𝐴𝑉))
50 elssuni 4403 . . . . . . . . . . . . . . . 16 ((𝐴𝑉) ∈ 𝑆 → (𝐴𝑉) ⊆ 𝑆)
5110, 50syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝑉) ⊆ 𝑆)
5251ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝐴𝑉) ⊆ 𝑆)
5349, 52sstrd 3578 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑠 𝑆)
54 simprr2 1103 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢𝑠)
5515ssntr 20672 . . . . . . . . . . . . 13 (((𝑆 ∈ Top ∧ 𝑠 𝑆) ∧ (𝑢𝑆𝑢𝑠)) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5637, 53, 41, 54, 55syl22anc 1319 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → 𝑢 ⊆ ((int‘𝑆)‘𝑠))
5747, 56syl5ss 3579 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠))
58 simprr3 1104 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → (𝑆t 𝑠) ∈ Comp)
5957, 58jca 553 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))
60 eleq2 2677 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → (𝑥𝑦𝑥 ∈ (𝑢 ∩ (𝐵𝐾))))
61 sseq1 3589 . . . . . . . . . . . . 13 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → (𝑦 ⊆ ((int‘𝑆)‘𝑠) ↔ (𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠)))
6261anbi1d 737 . . . . . . . . . . . 12 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6360, 62anbi12d 743 . . . . . . . . . . 11 (𝑦 = (𝑢 ∩ (𝐵𝐾)) → ((𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6463rspcev 3282 . . . . . . . . . 10 (((𝑢 ∩ (𝐵𝐾)) ∈ (𝑆t (𝐵𝐾)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐵𝐾)) ∧ ((𝑢 ∩ (𝐵𝐾)) ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6543, 46, 59, 64syl12anc 1316 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) ∧ (𝑢𝑆 ∧ (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
6665rexlimdvaa 3014 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐵𝐾)) ∧ 𝑠 ∈ 𝒫 (𝐴𝑉)) → (∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6766reximdva 3000 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵𝐾)) → (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑢𝑆 (𝑥𝑢𝑢𝑠 ∧ (𝑆t 𝑠) ∈ Comp) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
6834, 67mpd 15 . . . . . 6 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
69 rexcom 3080 . . . . . . 7 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
70 r19.42v 3073 . . . . . . . 8 (∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ (𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7170rexbii 3023 . . . . . . 7 (∃𝑦 ∈ (𝑆t (𝐵𝐾))∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7269, 71bitri 263 . . . . . 6 (∃𝑠 ∈ 𝒫 (𝐴𝑉)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ (𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7368, 72sylib 207 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐾)) → ∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7473ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
7515restuni 20776 . . . . . 6 ((𝑆 ∈ Top ∧ (𝐵𝐾) ⊆ 𝑆) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7636, 25, 75syl2anc 691 . . . . 5 (𝜑 → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
7776raleqdv 3121 . . . 4 (𝜑 → (∀𝑥 ∈ (𝐵𝐾)∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)) ↔ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))))
7874, 77mpbid 221 . . 3 (𝜑 → ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp)))
79 eqid 2610 . . . 4 (𝑆t (𝐵𝐾)) = (𝑆t (𝐵𝐾))
80 fveq2 6103 . . . . . 6 (𝑠 = (𝑘𝑦) → ((int‘𝑆)‘𝑠) = ((int‘𝑆)‘(𝑘𝑦)))
8180sseq2d 3596 . . . . 5 (𝑠 = (𝑘𝑦) → (𝑦 ⊆ ((int‘𝑆)‘𝑠) ↔ 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦))))
82 oveq2 6557 . . . . . 6 (𝑠 = (𝑘𝑦) → (𝑆t 𝑠) = (𝑆t (𝑘𝑦)))
8382eleq1d 2672 . . . . 5 (𝑠 = (𝑘𝑦) → ((𝑆t 𝑠) ∈ Comp ↔ (𝑆t (𝑘𝑦)) ∈ Comp))
8481, 83anbi12d 743 . . . 4 (𝑠 = (𝑘𝑦) → ((𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp) ↔ (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))
8579, 84cmpcovf 21004 . . 3 (((𝑆t (𝐵𝐾)) ∈ Comp ∧ ∀𝑥 (𝑆t (𝐵𝐾))∃𝑦 ∈ (𝑆t (𝐵𝐾))(𝑥𝑦 ∧ ∃𝑠 ∈ 𝒫 (𝐴𝑉)(𝑦 ⊆ ((int‘𝑆)‘𝑠) ∧ (𝑆t 𝑠) ∈ Comp))) → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
864, 78, 85syl2anc 691 . 2 (𝜑 → ∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))))
8776adantr 480 . . . . . . 7 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (𝐵𝐾) = (𝑆t (𝐵𝐾)))
8887eqeq1d 2612 . . . . . 6 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → ((𝐵𝐾) = 𝑤 (𝑆t (𝐵𝐾)) = 𝑤))
8988biimpar 501 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (𝐵𝐾) = 𝑤)
9036ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑆 ∈ Top)
91 cntop2 20855 . . . . . . . . . . . 12 (𝐴 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top)
927, 91syl 17 . . . . . . . . . . 11 (𝜑𝑇 ∈ Top)
9392ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑇 ∈ Top)
94 xkotop 21201 . . . . . . . . . 10 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑆) ∈ Top)
9590, 93, 94syl2anc 691 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑇 ^ko 𝑆) ∈ Top)
96 cntop1 20854 . . . . . . . . . . . 12 (𝐵 ∈ (𝑅 Cn 𝑆) → 𝑅 ∈ Top)
971, 96syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Top)
9897ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑅 ∈ Top)
99 xkotop 21201 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top)
10098, 90, 99syl2anc 691 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆 ^ko 𝑅) ∈ Top)
101 simprrl 800 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘:𝑤⟶𝒫 (𝐴𝑉))
102 frn 5966 . . . . . . . . . . . . 13 (𝑘:𝑤⟶𝒫 (𝐴𝑉) → ran 𝑘 ⊆ 𝒫 (𝐴𝑉))
103101, 102syl 17 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ 𝒫 (𝐴𝑉))
104 sspwuni 4547 . . . . . . . . . . . 12 (ran 𝑘 ⊆ 𝒫 (𝐴𝑉) ↔ ran 𝑘 ⊆ (𝐴𝑉))
105103, 104sylib 207 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ (𝐴𝑉))
10610ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ∈ 𝑆)
107106, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴𝑉) ⊆ 𝑆)
108105, 107sstrd 3578 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 𝑆)
109 ffn 5958 . . . . . . . . . . . . 13 (𝑘:𝑤⟶𝒫 (𝐴𝑉) → 𝑘 Fn 𝑤)
110 fniunfv 6409 . . . . . . . . . . . . 13 (𝑘 Fn 𝑤 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
111101, 109, 1103syl 18 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
112111oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) = (𝑆t ran 𝑘))
113 inss2 3796 . . . . . . . . . . . . 13 (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin) ⊆ Fin
114 simplr 788 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin))
115113, 114sseldi 3566 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑤 ∈ Fin)
116 simprrr 801 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))
117 simpr 476 . . . . . . . . . . . . . 14 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t (𝑘𝑦)) ∈ Comp)
118117ralimi 2936 . . . . . . . . . . . . 13 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
119116, 118syl 17 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp)
12015fiuncmp 21017 . . . . . . . . . . . 12 ((𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀𝑦𝑤 (𝑆t (𝑘𝑦)) ∈ Comp) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
12190, 115, 119, 120syl3anc 1318 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t 𝑦𝑤 (𝑘𝑦)) ∈ Comp)
122112, 121eqeltrrd 2689 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑆t ran 𝑘) ∈ Comp)
1238ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑉𝑇)
12415, 90, 93, 108, 122, 123xkoopn 21202 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇 ^ko 𝑆))
125 xkococn.k . . . . . . . . . . 11 (𝜑𝐾 𝑅)
126125ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐾 𝑅)
1272ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝑅t 𝐾) ∈ Comp)
128111, 108eqsstrd 3602 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
129 iunss 4497 . . . . . . . . . . . . 13 ( 𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
130128, 129sylib 207 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆)
13115ntropn 20663 . . . . . . . . . . . . . 14 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
132131ex 449 . . . . . . . . . . . . 13 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
133132ralimdv 2946 . . . . . . . . . . . 12 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆))
13490, 130, 133sylc 63 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
135 iunopn 20528 . . . . . . . . . . 11 ((𝑆 ∈ Top ∧ ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13690, 134, 135syl2anc 691 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ∈ 𝑆)
13721, 98, 90, 126, 127, 136xkoopn 21202 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆 ^ko 𝑅))
138 txopn 21215 . . . . . . . . 9 ((((𝑇 ^ko 𝑆) ∈ Top ∧ (𝑆 ^ko 𝑅) ∈ Top) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∈ (𝑇 ^ko 𝑆) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ∈ (𝑆 ^ko 𝑅))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅)))
13995, 100, 124, 137, 138syl22anc 1319 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅)))
1407ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ (𝑆 Cn 𝑇))
141 imaiun 6407 . . . . . . . . . . . 12 (𝐴 𝑦𝑤 (𝑘𝑦)) = 𝑦𝑤 (𝐴 “ (𝑘𝑦))
142111imaeq2d 5385 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 𝑦𝑤 (𝑘𝑦)) = (𝐴 ran 𝑘))
143141, 142syl5eqr 2658 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) = (𝐴 ran 𝑘))
144111, 105eqsstrd 3602 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
14519ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → Fun 𝐴)
146101, 109syl 17 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑘 Fn 𝑤)
14727ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → dom 𝐴 = 𝑆)
148108, 147sseqtr4d 3605 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ran 𝑘 ⊆ dom 𝐴)
149 simpl1 1057 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → Fun 𝐴)
1501103ad2ant2 1076 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) = ran 𝑘)
151 simp3 1056 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ran 𝑘 ⊆ dom 𝐴)
152150, 151eqsstrd 3602 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
153 iunss 4497 . . . . . . . . . . . . . . . . . 18 ( 𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
154152, 153sylib 207 . . . . . . . . . . . . . . . . 17 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ∀𝑦𝑤 (𝑘𝑦) ⊆ dom 𝐴)
155154r19.21bi 2916 . . . . . . . . . . . . . . . 16 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → (𝑘𝑦) ⊆ dom 𝐴)
156 funimass3 6241 . . . . . . . . . . . . . . . 16 ((Fun 𝐴 ∧ (𝑘𝑦) ⊆ dom 𝐴) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
157149, 155, 156syl2anc 691 . . . . . . . . . . . . . . 15 (((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) ∧ 𝑦𝑤) → ((𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ (𝑘𝑦) ⊆ (𝐴𝑉)))
158157ralbidva 2968 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → (∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
159 iunss 4497 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 ↔ ∀𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
160 iunss 4497 . . . . . . . . . . . . . 14 ( 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉) ↔ ∀𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉))
161158, 159, 1603bitr4g 302 . . . . . . . . . . . . 13 ((Fun 𝐴𝑘 Fn 𝑤 ran 𝑘 ⊆ dom 𝐴) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
162145, 146, 148, 161syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ( 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉 𝑦𝑤 (𝑘𝑦) ⊆ (𝐴𝑉)))
163144, 162mpbird 246 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 (𝐴 “ (𝑘𝑦)) ⊆ 𝑉)
164143, 163eqsstr3d 3603 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐴 ran 𝑘) ⊆ 𝑉)
165 imaeq1 5380 . . . . . . . . . . . 12 (𝑎 = 𝐴 → (𝑎 ran 𝑘) = (𝐴 ran 𝑘))
166165sseq1d 3595 . . . . . . . . . . 11 (𝑎 = 𝐴 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝐴 ran 𝑘) ⊆ 𝑉))
167166elrab 3331 . . . . . . . . . 10 (𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ↔ (𝐴 ∈ (𝑆 Cn 𝑇) ∧ (𝐴 ran 𝑘) ⊆ 𝑉))
168140, 164, 167sylanbrc 695 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉})
1691ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ (𝑅 Cn 𝑆))
170 simprl 790 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑤)
171 uniiun 4509 . . . . . . . . . . . 12 𝑤 = 𝑦𝑤 𝑦
172170, 171syl6eq 2660 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) = 𝑦𝑤 𝑦)
173 simpl 472 . . . . . . . . . . . . 13 ((𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
174173ralimi 2936 . . . . . . . . . . . 12 (∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp) → ∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)))
175 ss2iun 4472 . . . . . . . . . . . 12 (∀𝑦𝑤 𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
176116, 174, 1753syl 18 . . . . . . . . . . 11 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 𝑦 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
177172, 176eqsstrd 3602 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
178 imaeq1 5380 . . . . . . . . . . . 12 (𝑏 = 𝐵 → (𝑏𝐾) = (𝐵𝐾))
179178sseq1d 3595 . . . . . . . . . . 11 (𝑏 = 𝐵 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
180179elrab 3331 . . . . . . . . . 10 (𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ↔ (𝐵 ∈ (𝑅 Cn 𝑆) ∧ (𝐵𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
181169, 177, 180sylanbrc 695 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})
182 opelxpi 5072 . . . . . . . . 9 ((𝐴 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝐵 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}))
183168, 181, 182syl2anc 691 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}))
184 imaeq1 5380 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑎 ran 𝑘) = (𝑢 ran 𝑘))
185184sseq1d 3595 . . . . . . . . . . . . . 14 (𝑎 = 𝑢 → ((𝑎 ran 𝑘) ⊆ 𝑉 ↔ (𝑢 ran 𝑘) ⊆ 𝑉))
186185elrab 3331 . . . . . . . . . . . . 13 (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ↔ (𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉))
187 imaeq1 5380 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑏𝐾) = (𝑣𝐾))
188187sseq1d 3595 . . . . . . . . . . . . . 14 (𝑏 = 𝑣 → ((𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ↔ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
189188elrab 3331 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ↔ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))
190186, 189anbi12i 729 . . . . . . . . . . . 12 ((𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ↔ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))))
191 simprll 798 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑢 ∈ (𝑆 Cn 𝑇))
192 simprrl 800 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑣 ∈ (𝑅 Cn 𝑆))
193 coeq1 5201 . . . . . . . . . . . . . . 15 (𝑓 = 𝑢 → (𝑓𝑔) = (𝑢𝑔))
194 coeq2 5202 . . . . . . . . . . . . . . 15 (𝑔 = 𝑣 → (𝑢𝑔) = (𝑢𝑣))
195 xkococn.1 . . . . . . . . . . . . . . 15 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
196 vex 3176 . . . . . . . . . . . . . . . 16 𝑢 ∈ V
197 vex 3176 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
198196, 197coex 7011 . . . . . . . . . . . . . . 15 (𝑢𝑣) ∈ V
199193, 194, 195, 198ovmpt2 6694 . . . . . . . . . . . . . 14 ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ 𝑣 ∈ (𝑅 Cn 𝑆)) → (𝑢𝐹𝑣) = (𝑢𝑣))
200191, 192, 199syl2anc 691 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) = (𝑢𝑣))
201 cnco 20880 . . . . . . . . . . . . . . 15 ((𝑣 ∈ (𝑅 Cn 𝑆) ∧ 𝑢 ∈ (𝑆 Cn 𝑇)) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
202192, 191, 201syl2anc 691 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ (𝑅 Cn 𝑇))
203 imaco 5557 . . . . . . . . . . . . . . 15 ((𝑢𝑣) “ 𝐾) = (𝑢 “ (𝑣𝐾))
204 simprrr 801 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)))
20515ntrss2 20671 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ Top ∧ (𝑘𝑦) ⊆ 𝑆) → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
206205ex 449 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 ∈ Top → ((𝑘𝑦) ⊆ 𝑆 → ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
207206ralimdv 2946 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ Top → (∀𝑦𝑤 (𝑘𝑦) ⊆ 𝑆 → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦)))
20890, 130, 207sylc 63 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦))
209 ss2iun 4472 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ (𝑘𝑦) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ 𝑦𝑤 (𝑘𝑦))
211210, 111sseqtrd 3604 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
212211adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦)) ⊆ ran 𝑘)
213204, 212sstrd 3578 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑣𝐾) ⊆ ran 𝑘)
214 imass2 5420 . . . . . . . . . . . . . . . . 17 ((𝑣𝐾) ⊆ ran 𝑘 → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
215213, 214syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ (𝑢 ran 𝑘))
216 simprlr 799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 ran 𝑘) ⊆ 𝑉)
217215, 216sstrd 3578 . . . . . . . . . . . . . . 15 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢 “ (𝑣𝐾)) ⊆ 𝑉)
218203, 217syl5eqss 3612 . . . . . . . . . . . . . 14 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → ((𝑢𝑣) “ 𝐾) ⊆ 𝑉)
219 imaeq1 5380 . . . . . . . . . . . . . . . 16 ( = (𝑢𝑣) → (𝐾) = ((𝑢𝑣) “ 𝐾))
220219sseq1d 3595 . . . . . . . . . . . . . . 15 ( = (𝑢𝑣) → ((𝐾) ⊆ 𝑉 ↔ ((𝑢𝑣) “ 𝐾) ⊆ 𝑉))
221220elrab 3331 . . . . . . . . . . . . . 14 ((𝑢𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ((𝑢𝑣) ∈ (𝑅 Cn 𝑇) ∧ ((𝑢𝑣) “ 𝐾) ⊆ 𝑉))
222202, 218, 221sylanbrc 695 . . . . . . . . . . . . 13 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
223200, 222eqeltrd 2688 . . . . . . . . . . . 12 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ ((𝑢 ∈ (𝑆 Cn 𝑇) ∧ (𝑢 ran 𝑘) ⊆ 𝑉) ∧ (𝑣 ∈ (𝑅 Cn 𝑆) ∧ (𝑣𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))))) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
224190, 223sylan2b 491 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) ∧ (𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ∧ 𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) → (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
225224ralrimivva 2954 . . . . . . . . . 10 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
226195mpt2fun 6660 . . . . . . . . . . 11 Fun 𝐹
227 ssrab2 3650 . . . . . . . . . . . . 13 {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇)
228 ssrab2 3650 . . . . . . . . . . . . 13 {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)
229 xpss12 5148 . . . . . . . . . . . . 13 (({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} ⊆ (𝑆 Cn 𝑇) ∧ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} ⊆ (𝑅 Cn 𝑆)) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))
230227, 228, 229mp2an 704 . . . . . . . . . . . 12 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
231 vex 3176 . . . . . . . . . . . . . 14 𝑓 ∈ V
232 vex 3176 . . . . . . . . . . . . . 14 𝑔 ∈ V
233231, 232coex 7011 . . . . . . . . . . . . 13 (𝑓𝑔) ∈ V
234195, 233dmmpt2 7129 . . . . . . . . . . . 12 dom 𝐹 = ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))
235230, 234sseqtr4i 3601 . . . . . . . . . . 11 ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹
236 funimassov 6709 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
237226, 235, 236mp2an 704 . . . . . . . . . 10 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ∀𝑢 ∈ {𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉}∀𝑣 ∈ {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))} (𝑢𝐹𝑣) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
238225, 237sylibr 223 . . . . . . . . 9 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → (𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})
239 funimass3 6241 . . . . . . . . . 10 ((Fun 𝐹 ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ dom 𝐹) → ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
240226, 235, 239mp2an 704 . . . . . . . . 9 ((𝐹 “ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})) ⊆ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉} ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
241238, 240sylib 207 . . . . . . . 8 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))
242 eleq2 2677 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (⟨𝐴, 𝐵⟩ ∈ 𝑧 ↔ ⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))})))
243 sseq1 3589 . . . . . . . . . 10 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → (𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}) ↔ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
244242, 243anbi12d 743 . . . . . . . . 9 (𝑧 = ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) → ((⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})) ↔ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
245244rspcev 3282 . . . . . . . 8 ((({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅)) ∧ (⟨𝐴, 𝐵⟩ ∈ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ∧ ({𝑎 ∈ (𝑆 Cn 𝑇) ∣ (𝑎 ran 𝑘) ⊆ 𝑉} × {𝑏 ∈ (𝑅 Cn 𝑆) ∣ (𝑏𝐾) ⊆ 𝑦𝑤 ((int‘𝑆)‘(𝑘𝑦))}) ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
246139, 183, 241, 245syl12anc 1316 . . . . . . 7 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ ((𝐵𝐾) = 𝑤 ∧ (𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)))) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
247246expr 641 . . . . . 6 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → ((𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
248247exlimdv 1848 . . . . 5 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝐵𝐾) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
24989, 248syldan 486 . . . 4 (((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) ∧ (𝑆t (𝐵𝐾)) = 𝑤) → (∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp)) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
250249expimpd 627 . . 3 ((𝜑𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)) → (( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
251250rexlimdva 3013 . 2 (𝜑 → (∃𝑤 ∈ (𝒫 (𝑆t (𝐵𝐾)) ∩ Fin)( (𝑆t (𝐵𝐾)) = 𝑤 ∧ ∃𝑘(𝑘:𝑤⟶𝒫 (𝐴𝑉) ∧ ∀𝑦𝑤 (𝑦 ⊆ ((int‘𝑆)‘(𝑘𝑦)) ∧ (𝑆t (𝑘𝑦)) ∈ Comp))) → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉}))))
25286, 251mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑇 ^ko 𝑆) ×t (𝑆 ^ko 𝑅))(⟨𝐴, 𝐵⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝐾) ⊆ 𝑉})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  cop 4131   cuni 4372   ciun 4455   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  Fincfn 7841  t crest 15904  Topctop 20517  intcnt 20631   Cn ccn 20838  Compccmp 20999  𝑛-Locally cnlly 21078   ×t ctx 21173   ^ko cxko 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-ntr 20634  df-nei 20712  df-cn 20841  df-cmp 21000  df-nlly 21080  df-tx 21175  df-xko 21176
This theorem is referenced by:  xkococn  21273
  Copyright terms: Public domain W3C validator