Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass3 Structured version   Visualization version   GIF version

Theorem funimass3 6241
 Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6240 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funimass4 6157 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssel 3562 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 fvimacnv 6240 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
43ex 449 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵))))
52, 4syl9r 76 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))))
65imp31 447 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
76ralbidva 2968 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
81, 7bitrd 267 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
9 dfss3 3558 . 2 (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵))
108, 9syl6bbr 277 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ◡ccnv 5037  dom cdm 5038   “ cima 5041  Fun wfun 5798  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812 This theorem is referenced by:  funimass5  6242  funconstss  6243  fvimacnvALT  6244  fimacnv  6255  r0weon  8718  iscnp3  20858  cnpnei  20878  cnclsi  20886  cncls  20888  cncnp  20894  1stccnp  21075  txcnpi  21221  xkoco2cn  21271  xkococnlem  21272  basqtop  21324  kqnrmlem1  21356  kqnrmlem2  21357  reghmph  21406  nrmhmph  21407  elfm3  21564  rnelfm  21567  symgtgp  21715  tgpconcompeqg  21725  eltsms  21746  ucnprima  21896  plyco0  23752  plyeq0  23771  xrlimcnp  24495  rinvf1o  28814  xppreima  28829  cvmliftmolem1  30517  cvmlift2lem9  30547  cvmlift3lem6  30560  mclsppslem  30734
 Copyright terms: Public domain W3C validator