Step | Hyp | Ref
| Expression |
1 | | kqval.2 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
2 | 1 | kqtopon 21340 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹)) |
4 | | topontop 20541 |
. . 3
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
(KQ‘𝐽) ∈
Top) |
5 | 3, 4 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Top) |
6 | | simplr 788 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐽 ∈ Nrm) |
7 | 1 | kqid 21341 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
8 | 7 | ad2antrr 758 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝐹 ∈ (𝐽 Cn (KQ‘𝐽))) |
9 | | simprl 790 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑧 ∈ (KQ‘𝐽)) |
10 | | cnima 20879 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑧 ∈ (KQ‘𝐽)) → (◡𝐹 “ 𝑧) ∈ 𝐽) |
11 | 8, 9, 10 | syl2anc 691 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑧) ∈ 𝐽) |
12 | | inss1 3795 |
. . . . . . 7
⊢
((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧) ⊆ (Clsd‘(KQ‘𝐽)) |
13 | | simprr 792 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)) |
14 | 12, 13 | sseldi 3566 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽))) |
15 | | cnclima 20882 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn (KQ‘𝐽)) ∧ 𝑤 ∈ (Clsd‘(KQ‘𝐽))) → (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽)) |
16 | 8, 14, 15 | syl2anc 691 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽)) |
17 | | inss2 3796 |
. . . . . . 7
⊢
((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧) ⊆ 𝒫 𝑧 |
18 | 17, 13 | sseldi 3566 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → 𝑤 ∈ 𝒫 𝑧) |
19 | | elpwi 4117 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝑧 → 𝑤 ⊆ 𝑧) |
20 | | imass2 5420 |
. . . . . 6
⊢ (𝑤 ⊆ 𝑧 → (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧)) |
21 | 18, 19, 20 | 3syl 18 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧)) |
22 | | nrmsep3 20969 |
. . . . 5
⊢ ((𝐽 ∈ Nrm ∧ ((◡𝐹 “ 𝑧) ∈ 𝐽 ∧ (◡𝐹 “ 𝑤) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑤) ⊆ (◡𝐹 “ 𝑧))) → ∃𝑢 ∈ 𝐽 ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
23 | 6, 11, 16, 21, 22 | syl13anc 1320 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑢 ∈ 𝐽 ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
24 | | simplll 794 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝐽 ∈ (TopOn‘𝑋)) |
25 | | simprl 790 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ∈ 𝐽) |
26 | 1 | kqopn 21347 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑢 ∈ 𝐽) → (𝐹 “ 𝑢) ∈ (KQ‘𝐽)) |
27 | 24, 25, 26 | syl2anc 691 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ 𝑢) ∈ (KQ‘𝐽)) |
28 | | simprrl 800 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (◡𝐹 “ 𝑤) ⊆ 𝑢) |
29 | 1 | kqffn 21338 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
30 | | fnfun 5902 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
31 | 24, 29, 30 | 3syl 18 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → Fun 𝐹) |
32 | 14 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ∈ (Clsd‘(KQ‘𝐽))) |
33 | | eqid 2610 |
. . . . . . . . . 10
⊢ ∪ (KQ‘𝐽) = ∪
(KQ‘𝐽) |
34 | 33 | cldss 20643 |
. . . . . . . . 9
⊢ (𝑤 ∈
(Clsd‘(KQ‘𝐽))
→ 𝑤 ⊆ ∪ (KQ‘𝐽)) |
35 | 32, 34 | syl 17 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ ∪
(KQ‘𝐽)) |
36 | | toponuni 20542 |
. . . . . . . . 9
⊢
((KQ‘𝐽) ∈
(TopOn‘ran 𝐹) →
ran 𝐹 = ∪ (KQ‘𝐽)) |
37 | 24, 2, 36 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ran 𝐹 = ∪
(KQ‘𝐽)) |
38 | 35, 37 | sseqtr4d 3605 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ ran 𝐹) |
39 | | funimass1 5885 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝑤 ⊆ ran 𝐹) → ((◡𝐹 “ 𝑤) ⊆ 𝑢 → 𝑤 ⊆ (𝐹 “ 𝑢))) |
40 | 31, 38, 39 | syl2anc 691 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((◡𝐹 “ 𝑤) ⊆ 𝑢 → 𝑤 ⊆ (𝐹 “ 𝑢))) |
41 | 28, 40 | mpd 15 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑤 ⊆ (𝐹 “ 𝑢)) |
42 | | topontop 20541 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
43 | 24, 42 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝐽 ∈ Top) |
44 | | elssuni 4403 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽) |
45 | 44 | ad2antrl 760 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ⊆ ∪ 𝐽) |
46 | | eqid 2610 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
47 | 46 | clscld 20661 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
48 | 43, 45, 47 | syl2anc 691 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
49 | 1 | kqcld 21348 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽))) |
50 | 24, 48, 49 | syl2anc 691 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽))) |
51 | 46 | sscls 20670 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ 𝑢 ⊆
((cls‘𝐽)‘𝑢)) |
52 | 43, 45, 51 | syl2anc 691 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢)) |
53 | | imass2 5420 |
. . . . . . . 8
⊢ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) → (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
54 | 52, 53 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
55 | 33 | clsss2 20686 |
. . . . . . 7
⊢ (((𝐹 “ ((cls‘𝐽)‘𝑢)) ∈ (Clsd‘(KQ‘𝐽)) ∧ (𝐹 “ 𝑢) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
56 | 50, 54, 55 | syl2anc 691 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ (𝐹 “ ((cls‘𝐽)‘𝑢))) |
57 | | simprrr 801 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)) |
58 | 46 | clsss3 20673 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
59 | 43, 45, 58 | syl2anc 691 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
60 | | fndm 5904 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋) |
61 | 24, 29, 60 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → dom 𝐹 = 𝑋) |
62 | | toponuni 20542 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
63 | 24, 62 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → 𝑋 = ∪ 𝐽) |
64 | 61, 63 | eqtrd 2644 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → dom 𝐹 = ∪ 𝐽) |
65 | 59, 64 | sseqtr4d 3605 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) |
66 | | funimass3 6241 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘𝑢) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
67 | 31, 65, 66 | syl2anc 691 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧 ↔ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧))) |
68 | 57, 67 | mpbird 246 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → (𝐹 “ ((cls‘𝐽)‘𝑢)) ⊆ 𝑧) |
69 | 56, 68 | sstrd 3578 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧) |
70 | | sseq2 3590 |
. . . . . . 7
⊢ (𝑚 = (𝐹 “ 𝑢) → (𝑤 ⊆ 𝑚 ↔ 𝑤 ⊆ (𝐹 “ 𝑢))) |
71 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑚 = (𝐹 “ 𝑢) → ((cls‘(KQ‘𝐽))‘𝑚) = ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢))) |
72 | 71 | sseq1d 3595 |
. . . . . . 7
⊢ (𝑚 = (𝐹 “ 𝑢) → (((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧 ↔ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧)) |
73 | 70, 72 | anbi12d 743 |
. . . . . 6
⊢ (𝑚 = (𝐹 “ 𝑢) → ((𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐹 “ 𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧))) |
74 | 73 | rspcev 3282 |
. . . . 5
⊢ (((𝐹 “ 𝑢) ∈ (KQ‘𝐽) ∧ (𝑤 ⊆ (𝐹 “ 𝑢) ∧ ((cls‘(KQ‘𝐽))‘(𝐹 “ 𝑢)) ⊆ 𝑧)) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
75 | 27, 41, 69, 74 | syl12anc 1316 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) ∧ (𝑢 ∈ 𝐽 ∧ ((◡𝐹 “ 𝑤) ⊆ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (◡𝐹 “ 𝑧)))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
76 | 23, 75 | rexlimddv 3017 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) ∧ (𝑧 ∈ (KQ‘𝐽) ∧ 𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧))) → ∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
77 | 76 | ralrimivva 2954 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → ∀𝑧 ∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧)) |
78 | | isnrm 20949 |
. 2
⊢
((KQ‘𝐽) ∈
Nrm ↔ ((KQ‘𝐽)
∈ Top ∧ ∀𝑧
∈ (KQ‘𝐽)∀𝑤 ∈ ((Clsd‘(KQ‘𝐽)) ∩ 𝒫 𝑧)∃𝑚 ∈ (KQ‘𝐽)(𝑤 ⊆ 𝑚 ∧ ((cls‘(KQ‘𝐽))‘𝑚) ⊆ 𝑧))) |
79 | 5, 77, 78 | sylanbrc 695 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Nrm) → (KQ‘𝐽) ∈ Nrm) |