MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass3 Structured version   Unicode version

Theorem funimass3 6010
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 6009 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )

Proof of Theorem funimass3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funimass4 5929 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssel 3458 . . . . . 6  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
3 fvimacnv 6009 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
43ex 435 . . . . . 6  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) )
52, 4syl9r 74 . . . . 5  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( x  e.  A  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) ) )
65imp31 433 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
76ralbidva 2861 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  e.  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
81, 7bitrd 256 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
9 dfss3 3454 . 2  |-  ( A 
C_  ( `' F " B )  <->  A. x  e.  A  x  e.  ( `' F " B ) )
108, 9syl6bbr 266 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1868   A.wral 2775    C_ wss 3436   `'ccnv 4849   dom cdm 4850   "cima 4853   Fun wfun 5592   ` cfv 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4552  ax-pr 4657
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-opab 4480  df-id 4765  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-iota 5562  df-fun 5600  df-fn 5601  df-fv 5606
This theorem is referenced by:  funimass5  6011  funconstss  6012  fvimacnvALT  6013  fimacnv  6024  r0weon  8445  iscnp3  20247  cnpnei  20267  cnclsi  20275  cncls  20277  cncnp  20283  1stccnp  20464  txcnpi  20610  xkoco2cn  20660  xkococnlem  20661  basqtop  20713  kqnrmlem1  20745  kqnrmlem2  20746  reghmph  20795  nrmhmph  20796  elfm3  20952  rnelfm  20955  symgtgp  21103  tgpconcompeqg  21113  eltsms  21134  ucnprima  21284  plyco0  23133  plyeq0  23152  xrlimcnp  23881  rinvf1o  28220  xppreima  28238  cvmliftmolem1  30000  cvmlift2lem9  30030  cvmlift3lem6  30043  mclsppslem  30217
  Copyright terms: Public domain W3C validator