MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass3 Structured version   Visualization version   Unicode version

Theorem funimass3 5998
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5997 would be the special case of  A being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )

Proof of Theorem funimass3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funimass4 5916 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
2 ssel 3426 . . . . . 6  |-  ( A 
C_  dom  F  ->  ( x  e.  A  ->  x  e.  dom  F ) )
3 fvimacnv 5997 . . . . . . 7  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
43ex 436 . . . . . 6  |-  ( Fun 
F  ->  ( x  e.  dom  F  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) )
52, 4syl9r 74 . . . . 5  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( x  e.  A  ->  (
( F `  x
)  e.  B  <->  x  e.  ( `' F " B ) ) ) ) )
65imp31 434 . . . 4  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  x  e.  A
)  ->  ( ( F `  x )  e.  B  <->  x  e.  ( `' F " B ) ) )
76ralbidva 2824 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( A. x  e.  A  ( F `  x )  e.  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
81, 7bitrd 257 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  x  e.  ( `' F " B ) ) )
9 dfss3 3422 . 2  |-  ( A 
C_  ( `' F " B )  <->  A. x  e.  A  x  e.  ( `' F " B ) )
108, 9syl6bbr 267 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A 
C_  ( `' F " B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    e. wcel 1887   A.wral 2737    C_ wss 3404   `'ccnv 4833   dom cdm 4834   "cima 4837   Fun wfun 5576   ` cfv 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-fv 5590
This theorem is referenced by:  funimass5  5999  funconstss  6000  fvimacnvALT  6001  fimacnv  6012  r0weon  8443  iscnp3  20260  cnpnei  20280  cnclsi  20288  cncls  20290  cncnp  20296  1stccnp  20477  txcnpi  20623  xkoco2cn  20673  xkococnlem  20674  basqtop  20726  kqnrmlem1  20758  kqnrmlem2  20759  reghmph  20808  nrmhmph  20809  elfm3  20965  rnelfm  20968  symgtgp  21116  tgpconcompeqg  21126  eltsms  21147  ucnprima  21297  plyco0  23146  plyeq0  23165  xrlimcnp  23894  rinvf1o  28230  xppreima  28248  cvmliftmolem1  30004  cvmlift2lem9  30034  cvmlift3lem6  30047  mclsppslem  30221
  Copyright terms: Public domain W3C validator