MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlimcnp Structured version   Visualization version   GIF version

Theorem xrlimcnp 24495
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the corresponding extended real function at +∞. Since any 𝑟 limit can be written in the form on the left side of the implication, this shows that real limits are a special case of topological continuity at a point. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
xrlimcnp.a (𝜑𝐴 = (𝐵 ∪ {+∞}))
xrlimcnp.b (𝜑𝐵 ⊆ ℝ)
xrlimcnp.r ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
xrlimcnp.c (𝑥 = +∞ → 𝑅 = 𝐶)
xrlimcnp.j 𝐽 = (TopOpen‘ℂfld)
xrlimcnp.k 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
Assertion
Ref Expression
xrlimcnp (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝑅(𝑥)   𝐽(𝑥)   𝐾(𝑥)

Proof of Theorem xrlimcnp
Dummy variables 𝑘 𝑟 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlimcnp.r . . . . 5 ((𝜑𝑥𝐴) → 𝑅 ∈ ℂ)
2 eqid 2610 . . . . 5 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
31, 2fmptd 6292 . . . 4 (𝜑 → (𝑥𝐴𝑅):𝐴⟶ℂ)
43adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅):𝐴⟶ℂ)
5 ssun2 3739 . . . . . . . . . 10 {+∞} ⊆ (𝐵 ∪ {+∞})
6 pnfex 9972 . . . . . . . . . . 11 +∞ ∈ V
76snid 4155 . . . . . . . . . 10 +∞ ∈ {+∞}
85, 7sselii 3565 . . . . . . . . 9 +∞ ∈ (𝐵 ∪ {+∞})
9 xrlimcnp.a . . . . . . . . 9 (𝜑𝐴 = (𝐵 ∪ {+∞}))
108, 9syl5eleqr 2695 . . . . . . . 8 (𝜑 → +∞ ∈ 𝐴)
111ralrimiva 2949 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝑅 ∈ ℂ)
12 xrlimcnp.c . . . . . . . . . . 11 (𝑥 = +∞ → 𝑅 = 𝐶)
1312eleq1d 2672 . . . . . . . . . 10 (𝑥 = +∞ → (𝑅 ∈ ℂ ↔ 𝐶 ∈ ℂ))
1413rspcv 3278 . . . . . . . . 9 (+∞ ∈ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → 𝐶 ∈ ℂ))
1510, 11, 14sylc 63 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
1612, 2fvmptg 6189 . . . . . . . 8 ((+∞ ∈ 𝐴𝐶 ∈ ℂ) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1710, 15, 16syl2anc 691 . . . . . . 7 (𝜑 → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1817ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
1918eleq1d 2672 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦𝐶𝑦))
20 cnxmet 22386 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
21 xrlimcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
2221cnfldtopn 22395 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
2322mopni2 22108 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
2420, 23mp3an1 1403 . . . . . . 7 ((𝑦𝐽𝐶𝑦) → ∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
25 ssun1 3738 . . . . . . . . . . . . 13 𝐵 ⊆ (𝐵 ∪ {+∞})
2625, 9syl5sseqr 3617 . . . . . . . . . . . 12 (𝜑𝐵𝐴)
27 ssralv 3629 . . . . . . . . . . . 12 (𝐵𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥𝐵 𝑅 ∈ ℂ))
2826, 11, 27sylc 63 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵 𝑅 ∈ ℂ)
2928ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
30 simprl 790 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
31 simplr 788 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
3229, 30, 31rlimi 14092 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
33 letop 20820 . . . . . . . . . . . . . . 15 (ordTop‘ ≤ ) ∈ Top
3433a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (ordTop‘ ≤ ) ∈ Top)
35 xrlimcnp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ⊆ ℝ)
36 ressxr 9962 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3735, 36syl6ss 3580 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ⊆ ℝ*)
38 pnfxr 9971 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → +∞ ∈ ℝ*)
4039snssd 4281 . . . . . . . . . . . . . . . . . 18 (𝜑 → {+∞} ⊆ ℝ*)
4137, 40unssd 3751 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 ∪ {+∞}) ⊆ ℝ*)
429, 41eqsstrd 3602 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ*)
43 xrex 11705 . . . . . . . . . . . . . . . . 17 * ∈ V
4443ssex 4730 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ*𝐴 ∈ V)
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
4645ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 ∈ V)
47 iocpnfordt 20829 . . . . . . . . . . . . . . 15 (𝑘(,]+∞) ∈ (ordTop‘ ≤ )
4847a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑘(,]+∞) ∈ (ordTop‘ ≤ ))
49 elrestr 15912 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V ∧ (𝑘(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
5034, 46, 48, 49syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
51 xrlimcnp.k . . . . . . . . . . . . 13 𝐾 = ((ordTop‘ ≤ ) ↾t 𝐴)
5250, 51syl6eleqr 2699 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾)
53 simprl 790 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ)
5453rexrd 9968 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 ∈ ℝ*)
5538a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ℝ*)
56 ltpnf 11830 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℝ → 𝑘 < +∞)
5753, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑘 < +∞)
58 ubioc1 12098 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑘 < +∞) → +∞ ∈ (𝑘(,]+∞))
5954, 55, 57, 58syl3anc 1318 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ (𝑘(,]+∞))
6010ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ 𝐴)
6159, 60elind 3760 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴))
62 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ)
6362rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑘 ∈ ℝ*)
64 elioc1 12088 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
6563, 38, 64sylancl 693 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
66 simp2 1055 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞) → 𝑘 < 𝑥)
6765, 66syl6bi 242 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘 < 𝑥))
6835ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → 𝐵 ⊆ ℝ)
6968sselda 3568 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
70 ltle 10005 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 < 𝑥𝑘𝑥))
7162, 69, 70syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑘 < 𝑥𝑘𝑥))
7267, 71syld 46 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑥 ∈ (𝑘(,]+∞) → 𝑘𝑥))
7320a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (abs ∘ − ) ∈ (∞Met‘ℂ))
74 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → 𝑟 ∈ ℝ+)
7574ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ+)
76 rpxr 11716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
7775, 76syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑟 ∈ ℝ*)
7815ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ ℂ)
7928ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → ∀𝑥𝐵 𝑅 ∈ ℂ)
8079r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
81 elbl3 22007 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
8273, 77, 78, 80, 81syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
83 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (abs ∘ − ) = (abs ∘ − )
8483cnmetdval 22384 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8580, 78, 84syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
8685breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
8782, 86bitrd 267 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
8887biimprd 237 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((abs‘(𝑅𝐶)) < 𝑟𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
8972, 88imim12d 79 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) ∧ 𝑥𝐵) → ((𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9089ralimdva 2945 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ 𝑘 ∈ ℝ) → (∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
9190impr 647 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
9220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (abs ∘ − ) ∈ (∞Met‘ℂ))
9315ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ ℂ)
94 simplrl 796 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝑟 ∈ ℝ+)
95 blcntr 22028 . . . . . . . . . . . . . . . . . . . . 21 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9692, 93, 94, 95syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
9796a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
98 eleq1 2676 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑥 ∈ (𝑘(,]+∞) ↔ +∞ ∈ (𝑘(,]+∞)))
9912eleq1d 2672 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = +∞ → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10098, 99imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = +∞ → ((𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
1016, 100ralsn 4169 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑘(,]+∞) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
10297, 101sylibr 223 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
103 ralunb 3756 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (∀𝑥𝐵 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ ∀𝑥 ∈ {+∞} (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
10491, 102, 103sylanbrc 695 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
1059ad2antrr 758 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → 𝐴 = (𝐵 ∪ {+∞}))
106105raleqdv 3121 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∀𝑥 ∈ (𝐵 ∪ {+∞})(𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
107104, 106mpbird 246 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
108 ss2rab 3641 . . . . . . . . . . . . . . . 16 ({𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)} ↔ ∀𝑥𝐴 (𝑥 ∈ (𝑘(,]+∞) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
109107, 108sylibr 223 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)} ⊆ {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)})
110 incom 3767 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) = (𝐴 ∩ (𝑘(,]+∞))
111 dfin5 3548 . . . . . . . . . . . . . . . 16 (𝐴 ∩ (𝑘(,]+∞)) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
112110, 111eqtri 2632 . . . . . . . . . . . . . . 15 ((𝑘(,]+∞) ∩ 𝐴) = {𝑥𝐴𝑥 ∈ (𝑘(,]+∞)}
1132mptpreima 5545 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)) = {𝑥𝐴𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)}
114109, 112, 1133sstr4g 3609 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟)))
115 funmpt 5840 . . . . . . . . . . . . . . 15 Fun (𝑥𝐴𝑅)
116 inss2 3796 . . . . . . . . . . . . . . . 16 ((𝑘(,]+∞) ∩ 𝐴) ⊆ 𝐴
1173ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝑥𝐴𝑅):𝐴⟶ℂ)
118 fdm 5964 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅):𝐴⟶ℂ → dom (𝑥𝐴𝑅) = 𝐴)
119117, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → dom (𝑥𝐴𝑅) = 𝐴)
120116, 119syl5sseqr 3617 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅))
121 funimass3 6241 . . . . . . . . . . . . . . 15 ((Fun (𝑥𝐴𝑅) ∧ ((𝑘(,]+∞) ∩ 𝐴) ⊆ dom (𝑥𝐴𝑅)) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
122115, 120, 121sylancr 694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑘(,]+∞) ∩ 𝐴) ⊆ ((𝑥𝐴𝑅) “ (𝐶(ball‘(abs ∘ − ))𝑟))))
123114, 122mpbird 246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
124 simplrr 797 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)
125123, 124sstrd 3578 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)
126 eleq2 2677 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ ((𝑘(,]+∞) ∩ 𝐴)))
127 imaeq2 5381 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)))
128127sseq1d 3595 . . . . . . . . . . . . . 14 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦 ↔ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦))
129126, 128anbi12d 743 . . . . . . . . . . . . 13 (𝑧 = ((𝑘(,]+∞) ∩ 𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦) ↔ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)))
130129rspcev 3282 . . . . . . . . . . . 12 ((((𝑘(,]+∞) ∩ 𝐴) ∈ 𝐾 ∧ (+∞ ∈ ((𝑘(,]+∞) ∩ 𝐴) ∧ ((𝑥𝐴𝑅) “ ((𝑘(,]+∞) ∩ 𝐴)) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
13152, 61, 125, 130syl12anc 1316 . . . . . . . . . . 11 (((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) ∧ (𝑘 ∈ ℝ ∧ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟))) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
132131rexlimdvaa 3014 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
133132adantlr 747 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → (∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘𝑥 → (abs‘(𝑅𝐶)) < 𝑟) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13432, 133mpd 15 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ (𝑟 ∈ ℝ+ ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦))
135134rexlimdvaa 3014 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (∃𝑟 ∈ ℝ+ (𝐶(ball‘(abs ∘ − ))𝑟) ⊆ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13624, 135syl5 33 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑦𝐽𝐶𝑦) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
137136expdimp 452 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (𝐶𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
13819, 137sylbid 229 . . . 4 (((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) ∧ 𝑦𝐽) → (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
139138ralrimiva 2949 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))
140 letopon 20819 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
141 resttopon 20775 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐴 ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
142140, 42, 141sylancr 694 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t 𝐴) ∈ (TopOn‘𝐴))
14351, 142syl5eqel 2692 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝐴))
14421cnfldtopon 22396 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
145144a1i 11 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ℂ))
146 iscnp 20851 . . . . 5 ((𝐾 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘ℂ) ∧ +∞ ∈ 𝐴) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
147143, 145, 10, 146syl3anc 1318 . . . 4 (𝜑 → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
148147adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → ((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ↔ ((𝑥𝐴𝑅):𝐴⟶ℂ ∧ ∀𝑦𝐽 (((𝑥𝐴𝑅)‘+∞) ∈ 𝑦 → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ 𝑦)))))
1494, 139, 148mpbir2and 959 . 2 ((𝜑 ∧ (𝑥𝐵𝑅) ⇝𝑟 𝐶) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
150 simplr 788 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞))
15120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (abs ∘ − ) ∈ (∞Met‘ℂ))
15215ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ ℂ)
15376adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
15422blopn 22115 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐶 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
155151, 152, 153, 154syl3anc 1318 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽)
15617ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) = 𝐶)
157 simpr 476 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
158151, 152, 157, 95syl3anc 1318 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐶 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
159156, 158eqeltrd 2688 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
160 cnpimaex 20870 . . . . . . 7 (((𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞) ∧ (𝐶(ball‘(abs ∘ − ))𝑟) ∈ 𝐽 ∧ ((𝑥𝐴𝑅)‘+∞) ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
161150, 155, 159, 160syl3anc 1318 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
162 vex 3176 . . . . . . . . 9 𝑤 ∈ V
163162inex1 4727 . . . . . . . 8 (𝑤𝐴) ∈ V
164163a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → (𝑤𝐴) ∈ V)
16551eleq2i 2680 . . . . . . . 8 (𝑧𝐾𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴))
16645ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → 𝐴 ∈ V)
167 elrest 15911 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ 𝐴 ∈ V) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
16833, 166, 167sylancr 694 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧 ∈ ((ordTop‘ ≤ ) ↾t 𝐴) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
169165, 168syl5bb 271 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (𝑧𝐾 ↔ ∃𝑤 ∈ (ordTop‘ ≤ )𝑧 = (𝑤𝐴)))
170 eleq2 2677 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (+∞ ∈ 𝑧 ↔ +∞ ∈ (𝑤𝐴)))
171 imaeq2 5381 . . . . . . . . . 10 (𝑧 = (𝑤𝐴) → ((𝑥𝐴𝑅) “ 𝑧) = ((𝑥𝐴𝑅) “ (𝑤𝐴)))
172171sseq1d 3595 . . . . . . . . 9 (𝑧 = (𝑤𝐴) → (((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
173170, 172anbi12d 743 . . . . . . . 8 (𝑧 = (𝑤𝐴) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
174173adantl 481 . . . . . . 7 ((((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑧 = (𝑤𝐴)) → ((+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ (+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
175164, 169, 174rexxfr2d 4809 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑧𝐾 (+∞ ∈ 𝑧 ∧ ((𝑥𝐴𝑅) “ 𝑧) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))))
176161, 175mpbid 221 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)))
177 inss1 3795 . . . . . . . . . . . 12 (𝑤𝐴) ⊆ 𝑤
178177sseli 3564 . . . . . . . . . . 11 (+∞ ∈ (𝑤𝐴) → +∞ ∈ 𝑤)
179 pnfnei 20834 . . . . . . . . . . 11 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑤) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
180178, 179sylan2 490 . . . . . . . . . 10 ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → ∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤)
181 df-ima 5051 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴))
182 inss2 3796 . . . . . . . . . . . . . . . . . 18 (𝑤𝐴) ⊆ 𝐴
183 resmpt 5369 . . . . . . . . . . . . . . . . . 18 ((𝑤𝐴) ⊆ 𝐴 → ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅))
184182, 183ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
185184rneqi 5273 . . . . . . . . . . . . . . . 16 ran ((𝑥𝐴𝑅) ↾ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
186181, 185eqtri 2632 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑅) “ (𝑤𝐴)) = ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
187186sseq1i 3592 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟))
188 dfss3 3558 . . . . . . . . . . . . . 14 (ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
189187, 188bitri 263 . . . . . . . . . . . . 13 (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))
19011adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥𝐴 𝑅 ∈ ℂ)
191 ssralv 3629 . . . . . . . . . . . . . . . 16 ((𝑤𝐴) ⊆ 𝐴 → (∀𝑥𝐴 𝑅 ∈ ℂ → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ))
192182, 190, 191mpsyl 66 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ ℝ+) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ)
193 eqid 2610 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑤𝐴) ↦ 𝑅) = (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)
194 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑅 → (𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
195193, 194ralrnmpt 6276 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ ℂ → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
196192, 195syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
197196biimpd 218 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ℝ+) → (∀𝑧 ∈ ran (𝑥 ∈ (𝑤𝐴) ↦ 𝑅)𝑧 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
198189, 197syl5bi 231 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)))
199 simplrr 797 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑘(,]+∞) ⊆ 𝑤)
20037ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐵 ⊆ ℝ*)
201 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐵)
202200, 201sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ ℝ*)
203 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 < 𝑥)
204 pnfge 11840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
205202, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ≤ +∞)
206 simplrl 796 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ)
207206rexrd 9968 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑘 ∈ ℝ*)
208207, 38, 64sylancl 693 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑥 ∈ (𝑘(,]+∞) ↔ (𝑥 ∈ ℝ*𝑘 < 𝑥𝑥 ≤ +∞)))
209202, 203, 205, 208mpbir3and 1238 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑘(,]+∞))
210199, 209sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝑤)
21126ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → 𝐵𝐴)
212211sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑥𝐴)
213212adantrr 749 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥𝐴)
214210, 213elind 3760 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑥 ∈ (𝑤𝐴))
215214ex 449 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑥 ∈ (𝑤𝐴)))
216215imim1d 80 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟))))
21720a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
21876adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
219218ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑟 ∈ ℝ*)
22015ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝐶 ∈ ℂ)
22128ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 𝑅 ∈ ℂ)
222221r19.21bi 2916 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ 𝑥𝐵) → 𝑅 ∈ ℂ)
223222adantrr 749 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → 𝑅 ∈ ℂ)
224217, 219, 220, 223, 81syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (𝑅(abs ∘ − )𝐶) < 𝑟))
225223, 220, 84syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅(abs ∘ − )𝐶) = (abs‘(𝑅𝐶)))
226225breq1d 4593 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → ((𝑅(abs ∘ − )𝐶) < 𝑟 ↔ (abs‘(𝑅𝐶)) < 𝑟))
227224, 226bitrd 267 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ (𝑥𝐵𝑘 < 𝑥)) → (𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) ↔ (abs‘(𝑅𝐶)) < 𝑟))
228227pm5.74da 719 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (((𝑥𝐵𝑘 < 𝑥) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ↔ ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
229216, 228sylibd 228 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ((𝑥𝐵𝑘 < 𝑥) → (abs‘(𝑅𝐶)) < 𝑟)))
230229exp4a 631 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ((𝑥 ∈ (𝑤𝐴) → 𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (𝑥𝐵 → (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
231230ralimdv2 2944 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
232231imp 444 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
233232an32s 842 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ (𝑘 ∈ ℝ ∧ (𝑘(,]+∞) ⊆ 𝑤)) → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
234233expr 641 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) ∧ 𝑘 ∈ ℝ) → ((𝑘(,]+∞) ⊆ 𝑤 → ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
235234reximdva 3000 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ ∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟)) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
236235ex 449 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ ℝ+) → (∀𝑥 ∈ (𝑤𝐴)𝑅 ∈ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
237198, 236syld 46 . . . . . . . . . . 11 ((𝜑𝑟 ∈ ℝ+) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
238237com23 84 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℝ (𝑘(,]+∞) ⊆ 𝑤 → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
239180, 238syl5 33 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ+) → ((𝑤 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))))
240239impl 648 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) ∧ +∞ ∈ (𝑤𝐴)) → (((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
241240expimpd 627 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑤 ∈ (ordTop‘ ≤ )) → ((+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
242241rexlimdva 3013 . . . . . 6 ((𝜑𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
243242adantlr 747 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → (∃𝑤 ∈ (ordTop‘ ≤ )(+∞ ∈ (𝑤𝐴) ∧ ((𝑥𝐴𝑅) “ (𝑤𝐴)) ⊆ (𝐶(ball‘(abs ∘ − ))𝑟)) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
244176, 243mpd 15 . . . 4 (((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) ∧ 𝑟 ∈ ℝ+) → ∃𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
245244ralrimiva 2949 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟))
24628, 35, 15rlim2lt 14076 . . . 4 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
247246adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ ∀𝑟 ∈ ℝ+𝑘 ∈ ℝ ∀𝑥𝐵 (𝑘 < 𝑥 → (abs‘(𝑅𝐶)) < 𝑟)))
248245, 247mpbird 246 . 2 ((𝜑 ∧ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)) → (𝑥𝐵𝑅) ⇝𝑟 𝐶)
249149, 248impbida 873 1 (𝜑 → ((𝑥𝐵𝑅) ⇝𝑟 𝐶 ↔ (𝑥𝐴𝑅) ∈ ((𝐾 CnP 𝐽)‘+∞)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  cin 3539  wss 3540  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  ccom 5042  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  +crp 11708  (,]cioc 12047  abscabs 13822  𝑟 crli 14064  t crest 15904  TopOpenctopn 15905  ordTopcordt 15982  ∞Metcxmt 19552  ballcbl 19554  fldccnfld 19567  Topctop 20517  TopOnctopon 20518   CnP ccnp 20839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rlim 14068  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-ordt 15984  df-ps 17023  df-tsr 17024  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cnp 20842  df-xms 21935  df-ms 21936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator