MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blcntr Structured version   Visualization version   GIF version

Theorem blcntr 22028
Description: A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blcntr ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))

Proof of Theorem blcntr
StepHypRef Expression
1 rpxr 11716 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 rpgt0 11720 . . 3 (𝑅 ∈ ℝ+ → 0 < 𝑅)
31, 2jca 553 . 2 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ* ∧ 0 < 𝑅))
4 xblcntr 22026 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
53, 4syl3an3 1353 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  0cc0 9815  *cxr 9952   < clt 9953  +crp 11708  ∞Metcxmt 19552  ballcbl 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-xr 9957  df-rp 11709  df-psmet 19559  df-xmet 19560  df-bl 19562
This theorem is referenced by:  bln0  22030  unirnbl  22035  blssex  22042  neibl  22116  blnei  22117  metss  22123  methaus  22135  met1stc  22136  met2ndci  22137  metrest  22139  prdsxmslem2  22144  metcnp3  22155  tgioo  22407  zdis  22427  metnrmlem2  22471  cnllycmp  22563  nmhmcn  22728  lmmbr  22864  cfilfcls  22880  iscmet3lem2  22898  caubl  22914  caublcls  22915  flimcfil  22920  ellimc3  23449  ulmdvlem1  23958  efopn  24204  logtayl  24206  xrlimcnp  24495  efrlim  24496  lgamucov  24564  cnllyscon  30481  poimirlem30  32609  blbnd  32756  heibor1lem  32778  heibor1  32779  binomcxplemnotnn0  37577  hoiqssbl  39515
  Copyright terms: Public domain W3C validator