Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimcfil | Structured version Visualization version GIF version |
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
lmcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
flimcfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimfil 21583 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | lmcau.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
5 | 4 | mopnuni 22056 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
7 | 6 | fveq2d 6107 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
8 | 3, 7 | eleqtrrd 2691 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
9 | 1 | flimelbas 21582 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ ∪ 𝐽) |
10 | 9 | ad2antlr 759 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ∪ 𝐽) |
11 | 5 | ad2antrr 758 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
12 | 10, 11 | eleqtrrd 2691 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ 𝑋) |
13 | simplr 788 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐽 fLim 𝐹)) | |
14 | 4 | mopntop 22055 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
15 | 14 | ad2antrr 758 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐽 ∈ Top) |
16 | simpll 786 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
17 | rpxr 11716 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ*) | |
18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*) |
19 | 4 | blopn 22115 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
20 | 16, 12, 18, 19 | syl3anc 1318 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
21 | simpr 476 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
22 | blcntr 22028 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) | |
23 | 16, 12, 21, 22 | syl3anc 1318 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) |
24 | opnneip 20733 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) | |
25 | 15, 20, 23, 24 | syl3anc 1318 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) |
26 | flimnei 21581 | . . . . 5 ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) | |
27 | 13, 25, 26 | syl2anc 691 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) |
28 | oveq1 6556 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦(ball‘𝐷)𝑥) = (𝐴(ball‘𝐷)𝑥)) | |
29 | 28 | eleq1d 2672 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦(ball‘𝐷)𝑥) ∈ 𝐹 ↔ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)) |
30 | 29 | rspcev 3282 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
31 | 12, 27, 30 | syl2anc 691 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
32 | 31 | ralrimiva 2949 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
33 | iscfil3 22879 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) | |
34 | 33 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) |
35 | 8, 32, 34 | mpbir2and 959 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {csn 4125 ∪ cuni 4372 ‘cfv 5804 (class class class)co 6549 ℝ*cxr 9952 ℝ+crp 11708 ∞Metcxmt 19552 ballcbl 19554 MetOpencmopn 19557 Topctop 20517 neicnei 20711 Filcfil 21459 fLim cflim 21548 CauFilccfil 22858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ico 12052 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-bl 19562 df-mopn 19563 df-fbas 19564 df-top 20521 df-bases 20522 df-topon 20523 df-nei 20712 df-fil 21460 df-flim 21553 df-cfil 22861 |
This theorem is referenced by: cmetss 22921 fmcncfil 29305 |
Copyright terms: Public domain | W3C validator |