Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmcau Structured version   Visualization version   GIF version

Theorem lmcau 22919
 Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of [Kreyszig] p. 28. (Contributed by NM, 29-Jan-2008.) (Proof shortened by Mario Carneiro, 5-May-2014.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
lmcau (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))

Proof of Theorem lmcau
Dummy variables 𝑥 𝑦 𝑓 𝑗 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcau.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21methaus 22135 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
3 lmfun 20995 . . . 4 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
4 funfvbrb 6238 . . . 4 (Fun (⇝𝑡𝐽) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
52, 3, 43syl 18 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) ↔ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)))
6 id 22 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
71, 6lmmbr 22864 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))))
87biimpa 500 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (𝑋pm ℂ) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋 ∧ ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦)))
98simp1d 1066 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (𝑋pm ℂ))
10 simprr 792 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
11 simplll 794 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
128simp2d 1067 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
1312ad2antrr 758 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋)
14 rpre 11715 . . . . . . . . . 10 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
1514ad2antlr 759 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑥 ∈ ℝ)
16 uzid 11578 . . . . . . . . . . . 12 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
1716ad2antrl 760 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → 𝑗 ∈ (ℤ𝑗))
18 fvres 6117 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑗) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
1917, 18syl 17 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) = (𝑓𝑗))
2010, 17ffvelrnd 6268 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → ((𝑓 ↾ (ℤ𝑗))‘𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2119, 20eqeltrrd 2689 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
22 blhalf 22020 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ ((⇝𝑡𝐽)‘𝑓) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ (𝑓𝑗) ∈ (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2311, 13, 15, 21, 22syl22anc 1319 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ⊆ ((𝑓𝑗)(ball‘𝐷)𝑥))
2410, 23fssd 5970 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))) → (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
25 rphalfcl 11734 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
268simp3d 1068 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦))
27 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = (𝑥 / 2) → (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) = (((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
2827feq3d 5945 . . . . . . . . . . . 12 (𝑦 = (𝑥 / 2) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ (𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
2928rexbidv 3034 . . . . . . . . . . 11 (𝑦 = (𝑥 / 2) → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) ↔ ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3029rspcv 3278 . . . . . . . . . 10 ((𝑥 / 2) ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)𝑦) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3125, 26, 30syl2im 39 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3231impcom 445 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
33 uzf 11566 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
34 ffn 5958 . . . . . . . . 9 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
35 reseq2 5312 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → (𝑓𝑢) = (𝑓 ↾ (ℤ𝑗)))
36 id 22 . . . . . . . . . . 11 (𝑢 = (ℤ𝑗) → 𝑢 = (ℤ𝑗))
3735, 36feq12d 5946 . . . . . . . . . 10 (𝑢 = (ℤ𝑗) → ((𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3837rexrn 6269 . . . . . . . . 9 (ℤ Fn ℤ → (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2))))
3933, 34, 38mp2b 10 . . . . . . . 8 (∃𝑢 ∈ ran ℤ(𝑓𝑢):𝑢⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)) ↔ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4032, 39sylib 207 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶(((⇝𝑡𝐽)‘𝑓)(ball‘𝐷)(𝑥 / 2)))
4124, 40reximddv 3001 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
4241ralrimiva 2949 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))
43 iscau 22882 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
4443adantr 480 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → (𝑓 ∈ (Cau‘𝐷) ↔ (𝑓 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝐷)𝑥))))
459, 42, 44mpbir2and 959 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓)) → 𝑓 ∈ (Cau‘𝐷))
4645ex 449 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑓(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝑓) → 𝑓 ∈ (Cau‘𝐷)))
475, 46sylbid 229 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ dom (⇝𝑡𝐽) → 𝑓 ∈ (Cau‘𝐷)))
4847ssrdv 3574 1 (𝐷 ∈ (∞Met‘𝑋) → dom (⇝𝑡𝐽) ⊆ (Cau‘𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  ran crn 5039   ↾ cres 5040  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑pm cpm 7745  ℂcc 9813  ℝcr 9814   / cdiv 10563  2c2 10947  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  ⇝𝑡clm 20840  Hauscha 20922  Caucca 22859 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-lm 20843  df-haus 20929  df-cau 22862 This theorem is referenced by:  hlimcaui  27477
 Copyright terms: Public domain W3C validator