MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimfil Structured version   Visualization version   GIF version

Theorem flimfil 21583
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = 𝐽
Assertion
Ref Expression
flimfil (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))

Proof of Theorem flimfil
StepHypRef Expression
1 flimuni.1 . . . . . 6 𝑋 = 𝐽
21elflim2 21578 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simplbi 475 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋))
43simp2d 1067 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ran Fil)
5 filunirn 21496 . . 3 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
64, 5sylib 207 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐹))
73simp3d 1068 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ⊆ 𝒫 𝑋)
8 sspwuni 4547 . . . . 5 (𝐹 ⊆ 𝒫 𝑋 𝐹𝑋)
97, 8sylib 207 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹𝑋)
10 flimneiss 21580 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
11 flimtop 21579 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
121topopn 20536 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
1311, 12syl 17 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐽)
141flimelbas 21582 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)
15 opnneip 20733 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋𝐽𝐴𝑋) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1611, 13, 14, 15syl3anc 1318 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 ∈ ((nei‘𝐽)‘{𝐴}))
1710, 16sseldd 3569 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋𝐹)
18 elssuni 4403 . . . . 5 (𝑋𝐹𝑋 𝐹)
1917, 18syl 17 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝑋 𝐹)
209, 19eqssd 3585 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 = 𝑋)
2120fveq2d 6107 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (Fil‘ 𝐹) = (Fil‘𝑋))
226, 21eleqtrd 2690 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  𝒫 cpw 4108  {csn 4125   cuni 4372  ran crn 5039  cfv 5804  (class class class)co 6549  Topctop 20517  neicnei 20711  Filcfil 21459   fLim cflim 21548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-nei 20712  df-fil 21460  df-flim 21553
This theorem is referenced by:  flimtopon  21584  flimss1  21587  flimclsi  21592  hausflimlem  21593  flimsncls  21600  cnpflfi  21613  flimfcls  21640  flimcfil  22920
  Copyright terms: Public domain W3C validator