MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metnrmlem2 Structured version   Visualization version   GIF version

Theorem metnrmlem2 22471
Description: Lemma for metnrm 22473. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metnrmlem.1 (𝜑𝐷 ∈ (∞Met‘𝑋))
metnrmlem.2 (𝜑𝑆 ∈ (Clsd‘𝐽))
metnrmlem.3 (𝜑𝑇 ∈ (Clsd‘𝐽))
metnrmlem.4 (𝜑 → (𝑆𝑇) = ∅)
metnrmlem.u 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
Assertion
Ref Expression
metnrmlem2 (𝜑 → (𝑈𝐽𝑇𝑈))
Distinct variable groups:   𝑥,𝑦,𝑡,𝐷   𝑡,𝐽,𝑦   𝜑,𝑡   𝑡,𝑇,𝑥,𝑦   𝑡,𝑆,𝑥,𝑦   𝑡,𝑋,𝑥,𝑦   𝑡,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦,𝑡)   𝐹(𝑥,𝑦)   𝐽(𝑥)

Proof of Theorem metnrmlem2
StepHypRef Expression
1 metnrmlem.u . . 3 𝑈 = 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2))
2 metnrmlem.1 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntop 22055 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ Top)
62adantr 480 . . . . . 6 ((𝜑𝑡𝑇) → 𝐷 ∈ (∞Met‘𝑋))
7 metnrmlem.3 . . . . . . . . 9 (𝜑𝑇 ∈ (Clsd‘𝐽))
8 eqid 2610 . . . . . . . . . 10 𝐽 = 𝐽
98cldss 20643 . . . . . . . . 9 (𝑇 ∈ (Clsd‘𝐽) → 𝑇 𝐽)
107, 9syl 17 . . . . . . . 8 (𝜑𝑇 𝐽)
113mopnuni 22056 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
122, 11syl 17 . . . . . . . 8 (𝜑𝑋 = 𝐽)
1310, 12sseqtr4d 3605 . . . . . . 7 (𝜑𝑇𝑋)
1413sselda 3568 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡𝑋)
15 metdscn.f . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
16 metnrmlem.2 . . . . . . . . . 10 (𝜑𝑆 ∈ (Clsd‘𝐽))
17 metnrmlem.4 . . . . . . . . . 10 (𝜑 → (𝑆𝑇) = ∅)
1815, 3, 2, 16, 7, 17metnrmlem1a 22469 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 < (𝐹𝑡) ∧ if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+))
1918simprd 478 . . . . . . . 8 ((𝜑𝑡𝑇) → if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) ∈ ℝ+)
2019rphalfcld 11760 . . . . . . 7 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+)
2120rpxrd 11749 . . . . . 6 ((𝜑𝑡𝑇) → (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*)
223blopn 22115 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ*) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
236, 14, 21, 22syl3anc 1318 . . . . 5 ((𝜑𝑡𝑇) → (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
2423ralrimiva 2949 . . . 4 (𝜑 → ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
25 iunopn 20528 . . . 4 ((𝐽 ∈ Top ∧ ∀𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽) → 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
265, 24, 25syl2anc 691 . . 3 (𝜑 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) ∈ 𝐽)
271, 26syl5eqel 2692 . 2 (𝜑𝑈𝐽)
28 blcntr 22028 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋 ∧ (if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2) ∈ ℝ+) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
296, 14, 20, 28syl3anc 1318 . . . . . 6 ((𝜑𝑡𝑇) → 𝑡 ∈ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3029snssd 4281 . . . . 5 ((𝜑𝑡𝑇) → {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3130ralrimiva 2949 . . . 4 (𝜑 → ∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
32 ss2iun 4472 . . . 4 (∀𝑡𝑇 {𝑡} ⊆ (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)) → 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
3331, 32syl 17 . . 3 (𝜑 𝑡𝑇 {𝑡} ⊆ 𝑡𝑇 (𝑡(ball‘𝐷)(if(1 ≤ (𝐹𝑡), 1, (𝐹𝑡)) / 2)))
34 iunid 4511 . . . 4 𝑡𝑇 {𝑡} = 𝑇
3534eqcomi 2619 . . 3 𝑇 = 𝑡𝑇 {𝑡}
3633, 35, 13sstr4g 3609 . 2 (𝜑𝑇𝑈)
3727, 36jca 553 1 (𝜑 → (𝑈𝐽𝑇𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cin 3539  wss 3540  c0 3874  ifcif 4036  {csn 4125   cuni 4372   ciun 4455   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  infcinf 8230  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  +crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635
This theorem is referenced by:  metnrmlem3  22472
  Copyright terms: Public domain W3C validator