Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  met1stc Structured version   Visualization version   GIF version

Theorem met1stc 22136
 Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met1stc (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)

Proof of Theorem met1stc
Dummy variables 𝑛 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 22055 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
31mopnuni 22056 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
43eleq2d 2673 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝐽))
54biimpar 501 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → 𝑥𝑋)
6 simpll 786 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
7 simplr 788 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑥𝑋)
8 nnrp 11718 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
98adantl 481 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
109rpreccld 11758 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
1110rpxrd 11749 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ*)
121blopn 22115 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
136, 7, 11, 12syl3anc 1318 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
14 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
1513, 14fmptd 6292 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽)
16 frn 5966 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽 → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
1715, 16syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
18 nnex 10903 . . . . . . . . 9 ℕ ∈ V
1918mptex 6390 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2019rnex 6992 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2120elpw 4114 . . . . . 6 (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
2217, 21sylibr 223 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽)
23 omelon 8426 . . . . . . . . 9 ω ∈ On
24 nnenom 12641 . . . . . . . . . 10 ℕ ≈ ω
2524ensymi 7892 . . . . . . . . 9 ω ≈ ℕ
26 isnumi 8655 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
2723, 25, 26mp2an 704 . . . . . . . 8 ℕ ∈ dom card
28 ovex 6577 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ V
2928, 14fnmpti 5935 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ
30 dffn4 6034 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ ↔ (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))))
3129, 30mpbi 219 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
32 fodomnum 8763 . . . . . . . 8 (ℕ ∈ dom card → ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ))
3327, 31, 32mp2 9 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ
34 domentr 7901 . . . . . . 7 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
3533, 24, 34mp2an 704 . . . . . 6 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω
3635a1i 11 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
37 simpll 786 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
38 simprl 790 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑧𝐽)
39 simprr 792 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑥𝑧)
401mopni2 22108 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝑥𝑧) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
4137, 38, 39, 40syl3anc 1318 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
42 simp-4l 802 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
43 simp-4r 803 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥𝑋)
44 simprl 790 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℕ)
4544nnrpd 11746 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℝ+)
4645rpreccld 11758 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ+)
47 blcntr 22028 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑦) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4842, 43, 46, 47syl3anc 1318 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4946rpxrd 11749 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ*)
50 simplrl 796 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ+)
5150rpxrd 11749 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ*)
52 nnrecre 10934 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
5352ad2antrl 760 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ)
5450rpred 11748 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ)
55 simprr 792 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) < 𝑟)
5653, 54, 55ltled 10064 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ≤ 𝑟)
57 ssbl 22038 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((1 / 𝑦) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (1 / 𝑦) ≤ 𝑟) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
5842, 43, 49, 51, 56, 57syl221anc 1329 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
59 simplrr 797 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
6058, 59sstrd 3578 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)
6148, 60jca 553 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
62 elrp 11710 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
63 nnrecl 11167 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6462, 63sylbi 206 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6564ad2antrl 760 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6661, 65reximddv 3001 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
6741, 66rexlimddv 3017 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
68 ovex 6577 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑦 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V)
70 vex 3176 . . . . . . . . . 10 𝑤 ∈ V
71 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (1 / 𝑛) = (1 / 𝑦))
7271oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (𝑥(ball‘𝐷)(1 / 𝑛)) = (𝑥(ball‘𝐷)(1 / 𝑦)))
7372cbvmptv 4678 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑦 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑦)))
7473elrnmpt 5293 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
7570, 74mp1i 13 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
76 eleq2 2677 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑥𝑤𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦))))
77 sseq1 3589 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑤𝑧 ↔ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
7876, 77anbi12d 743 . . . . . . . . . 10 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7978adantl 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8069, 75, 79rexxfr2d 4809 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧) ↔ ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8167, 80mpbird 246 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))
8281expr 641 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑧𝐽) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8382ralrimiva 2949 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
84 breq1 4586 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (𝑦 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω))
85 rexeq 3116 . . . . . . . . 9 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8685imbi2d 329 . . . . . . . 8 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8786ralbidv 2969 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8884, 87anbi12d 743 . . . . . 6 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))))
8988rspcev 3282 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ∧ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9022, 36, 83, 89syl12anc 1316 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
915, 90syldan 486 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9291ralrimiva 2949 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
93 eqid 2610 . . 3 𝐽 = 𝐽
9493is1stc2 21055 . 2 (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
952, 92, 94sylanbrc 695 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ⊆ wss 3540  𝒫 cpw 4108  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039  Oncon0 5640   Fn wfn 5799  ⟶wf 5800  –onto→wfo 5802  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≈ cen 7838   ≼ cdom 7839  cardccrd 8644  ℝcr 9814  0cc0 9815  1c1 9816  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   / cdiv 10563  ℕcn 10897  ℝ+crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  1st𝜔c1stc 21050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-1stc 21052 This theorem is referenced by:  metelcls  22911  metcnp4  22916  metcn4  22917
 Copyright terms: Public domain W3C validator