MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met1stc Structured version   Visualization version   GIF version

Theorem met1stc 22136
Description: The topology generated by a metric space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met1stc (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)

Proof of Theorem met1stc
Dummy variables 𝑛 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntop 22055 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
31mopnuni 22056 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
43eleq2d 2673 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋𝑥 𝐽))
54biimpar 501 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → 𝑥𝑋)
6 simpll 786 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
7 simplr 788 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑥𝑋)
8 nnrp 11718 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
98adantl 481 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ+)
109rpreccld 11758 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
1110rpxrd 11749 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ*)
121blopn 22115 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
136, 7, 11, 12syl3anc 1318 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑛 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
14 eqid 2610 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
1513, 14fmptd 6292 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽)
16 frn 5966 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ⟶𝐽 → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
1715, 16syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
18 nnex 10903 . . . . . . . . 9 ℕ ∈ V
1918mptex 6390 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2019rnex 6992 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ V
2120elpw 4114 . . . . . 6 (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ⊆ 𝐽)
2217, 21sylibr 223 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽)
23 omelon 8426 . . . . . . . . 9 ω ∈ On
24 nnenom 12641 . . . . . . . . . 10 ℕ ≈ ω
2524ensymi 7892 . . . . . . . . 9 ω ≈ ℕ
26 isnumi 8655 . . . . . . . . 9 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
2723, 25, 26mp2an 704 . . . . . . . 8 ℕ ∈ dom card
28 ovex 6577 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑛)) ∈ V
2928, 14fnmpti 5935 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ
30 dffn4 6034 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) Fn ℕ ↔ (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))))
3129, 30mpbi 219 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))
32 fodomnum 8763 . . . . . . . 8 (ℕ ∈ dom card → ((𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))):ℕ–onto→ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ))
3327, 31, 32mp2 9 . . . . . . 7 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ
34 domentr 7901 . . . . . . 7 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ℕ ∧ ℕ ≈ ω) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
3533, 24, 34mp2an 704 . . . . . 6 ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω
3635a1i 11 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω)
37 simpll 786 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝐷 ∈ (∞Met‘𝑋))
38 simprl 790 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑧𝐽)
39 simprr 792 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → 𝑥𝑧)
401mopni2 22108 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝐽𝑥𝑧) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
4137, 38, 39, 40syl3anc 1318 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
42 simp-4l 802 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝐷 ∈ (∞Met‘𝑋))
43 simp-4r 803 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥𝑋)
44 simprl 790 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℕ)
4544nnrpd 11746 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑦 ∈ ℝ+)
4645rpreccld 11758 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ+)
47 blcntr 22028 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (1 / 𝑦) ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4842, 43, 46, 47syl3anc 1318 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)))
4946rpxrd 11749 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ*)
50 simplrl 796 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ+)
5150rpxrd 11749 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ*)
52 nnrecre 10934 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
5352ad2antrl 760 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ∈ ℝ)
5450rpred 11748 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → 𝑟 ∈ ℝ)
55 simprr 792 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) < 𝑟)
5653, 54, 55ltled 10064 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (1 / 𝑦) ≤ 𝑟)
57 ssbl 22038 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ ((1 / 𝑦) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (1 / 𝑦) ≤ 𝑟) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
5842, 43, 49, 51, 56, 57syl221anc 1329 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ (𝑥(ball‘𝐷)𝑟))
59 simplrr 797 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)
6058, 59sstrd 3578 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)
6148, 60jca 553 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < 𝑟)) → (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
62 elrp 11710 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+ ↔ (𝑟 ∈ ℝ ∧ 0 < 𝑟))
63 nnrecl 11167 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ ∧ 0 < 𝑟) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6462, 63sylbi 206 . . . . . . . . . . 11 (𝑟 ∈ ℝ+ → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6564ad2antrl 760 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < 𝑟)
6661, 65reximddv 3001 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑥(ball‘𝐷)𝑟) ⊆ 𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
6741, 66rexlimddv 3017 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
68 ovex 6577 . . . . . . . . . 10 (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V
6968a1i 11 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑦 ∈ ℕ) → (𝑥(ball‘𝐷)(1 / 𝑦)) ∈ V)
70 vex 3176 . . . . . . . . . 10 𝑤 ∈ V
71 oveq2 6557 . . . . . . . . . . . . 13 (𝑛 = 𝑦 → (1 / 𝑛) = (1 / 𝑦))
7271oveq2d 6565 . . . . . . . . . . . 12 (𝑛 = 𝑦 → (𝑥(ball‘𝐷)(1 / 𝑛)) = (𝑥(ball‘𝐷)(1 / 𝑦)))
7372cbvmptv 4678 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) = (𝑦 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑦)))
7473elrnmpt 5293 . . . . . . . . . 10 (𝑤 ∈ V → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
7570, 74mp1i 13 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ↔ ∃𝑦 ∈ ℕ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))))
76 eleq2 2677 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑥𝑤𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦))))
77 sseq1 3589 . . . . . . . . . . 11 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → (𝑤𝑧 ↔ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧))
7876, 77anbi12d 743 . . . . . . . . . 10 (𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦)) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
7978adantl 481 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) ∧ 𝑤 = (𝑥(ball‘𝐷)(1 / 𝑦))) → ((𝑥𝑤𝑤𝑧) ↔ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8069, 75, 79rexxfr2d 4809 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → (∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧) ↔ ∃𝑦 ∈ ℕ (𝑥 ∈ (𝑥(ball‘𝐷)(1 / 𝑦)) ∧ (𝑥(ball‘𝐷)(1 / 𝑦)) ⊆ 𝑧)))
8167, 80mpbird 246 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑧𝐽𝑥𝑧)) → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))
8281expr 641 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ 𝑧𝐽) → (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8382ralrimiva 2949 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
84 breq1 4586 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (𝑦 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω))
85 rexeq 3116 . . . . . . . . 9 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∃𝑤𝑦 (𝑥𝑤𝑤𝑧) ↔ ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))
8685imbi2d 329 . . . . . . . 8 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8786ralbidv 2969 . . . . . . 7 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → (∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)) ↔ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧))))
8884, 87anbi12d 743 . . . . . 6 (𝑦 = ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) → ((𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))) ↔ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))))
8988rspcev 3282 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ∈ 𝒫 𝐽 ∧ (ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛))) ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤 ∈ ran (𝑛 ∈ ℕ ↦ (𝑥(ball‘𝐷)(1 / 𝑛)))(𝑥𝑤𝑤𝑧)))) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9022, 36, 83, 89syl12anc 1316 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
915, 90syldan 486 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 𝐽) → ∃𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
9291ralrimiva 2949 . 2 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧))))
93 eqid 2610 . . 3 𝐽 = 𝐽
9493is1stc2 21055 . 2 (𝐽 ∈ 1st𝜔 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 ∈ 𝒫 𝐽(𝑦 ≼ ω ∧ ∀𝑧𝐽 (𝑥𝑧 → ∃𝑤𝑦 (𝑥𝑤𝑤𝑧)))))
952, 92, 94sylanbrc 695 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1st𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  Oncon0 5640   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  ωcom 6957  cen 7838  cdom 7839  cardccrd 8644  cr 9814  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  cn 10897  +crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  1st𝜔c1stc 21050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-1stc 21052
This theorem is referenced by:  metelcls  22911  metcnp4  22916  metcn4  22917
  Copyright terms: Public domain W3C validator