MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndci Structured version   Visualization version   GIF version

Theorem met2ndci 22137
Description: A separable metric space (a metric space with a countable dense subset) is second-countable. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndci ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2nd𝜔)

Proof of Theorem met2ndci
Dummy variables 𝑛 𝑟 𝑡 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 methaus.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 22055 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ Top)
4 simpll 786 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
5 simplr1 1096 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝑋)
6 simprr 792 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
75, 6sseldd 3569 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝑋)
8 simprl 790 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ)
98nnrpd 11746 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ+)
109rpreccld 11758 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ+)
1110rpxrd 11749 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (1 / 𝑥) ∈ ℝ*)
121blopn 22115 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝑋 ∧ (1 / 𝑥) ∈ ℝ*) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
134, 7, 11, 12syl3anc 1318 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
1413ralrimivva 2954 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽)
15 eqid 2610 . . . . . 6 (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))
1615fmpt2 7126 . . . . 5 (∀𝑥 ∈ ℕ ∀𝑦𝐴 (𝑦(ball‘𝐷)(1 / 𝑥)) ∈ 𝐽 ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
1714, 16sylib 207 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽)
18 frn 5966 . . . 4 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽 → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
1917, 18syl 17 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽)
20 simpll 786 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝐷 ∈ (∞Met‘𝑋))
21 simprl 790 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑢𝐽)
22 simprr 792 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → 𝑧𝑢)
231mopni2 22108 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑢𝐽𝑧𝑢) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
2420, 21, 22, 23syl3anc 1318 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑟 ∈ ℝ+ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
25 simprl 790 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → 𝑟 ∈ ℝ+)
2625rphalfcld 11760 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → (𝑟 / 2) ∈ ℝ+)
27 elrp 11710 . . . . . . . 8 ((𝑟 / 2) ∈ ℝ+ ↔ ((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)))
28 nnrecl 11167 . . . . . . . 8 (((𝑟 / 2) ∈ ℝ ∧ 0 < (𝑟 / 2)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
2927, 28sylbi 206 . . . . . . 7 ((𝑟 / 2) ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
3026, 29syl 17 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝑟 / 2))
313ad2antrr 758 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐽 ∈ Top)
32 simpr1 1060 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴𝑋)
3332ad2antrr 758 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴𝑋)
341mopnuni 22056 . . . . . . . . . . . 12 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
3534ad3antrrr 762 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑋 = 𝐽)
3633, 35sseqtrd 3604 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐴 𝐽)
37 simplrr 797 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑢)
38 simplrl 796 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑢𝐽)
39 elunii 4377 . . . . . . . . . . . . 13 ((𝑧𝑢𝑢𝐽) → 𝑧 𝐽)
4037, 38, 39syl2anc 691 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 𝐽)
4140, 35eleqtrrd 2691 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧𝑋)
42 simpr3 1062 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ((cls‘𝐽)‘𝐴) = 𝑋)
4342ad2antrr 758 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((cls‘𝐽)‘𝐴) = 𝑋)
4441, 43eleqtrrd 2691 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
4520adantr 480 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
46 simprrl 800 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℕ)
4746nnrpd 11746 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑛 ∈ ℝ+)
4847rpreccld 11758 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ+)
4948rpxrd 11749 . . . . . . . . . . 11 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ∈ ℝ*)
501blopn 22115 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ*) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
5145, 41, 49, 50syl3anc 1318 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽)
52 blcntr 22028 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑧𝑋 ∧ (1 / 𝑛) ∈ ℝ+) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
5345, 41, 48, 52syl3anc 1318 . . . . . . . . . 10 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
54 eqid 2610 . . . . . . . . . . 11 𝐽 = 𝐽
5554clsndisj 20689 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∈ 𝐽𝑧 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
5631, 36, 44, 51, 53, 55syl32anc 1326 . . . . . . . . 9 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅)
57 n0 3890 . . . . . . . . 9 (((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5856, 57sylib 207 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑡 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
5946adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑛 ∈ ℕ)
60 inss2 3796 . . . . . . . . . . . 12 ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ⊆ 𝐴
61 simpr 476 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴))
6260, 61sseldi 3566 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝐴)
63 eqidd 2611 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
64 oveq2 6557 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (1 / 𝑥) = (1 / 𝑛))
6564oveq2d 6565 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑦(ball‘𝐷)(1 / 𝑥)) = (𝑦(ball‘𝐷)(1 / 𝑛)))
6665eqeq2d 2620 . . . . . . . . . . . 12 (𝑥 = 𝑛 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛))))
67 oveq1 6556 . . . . . . . . . . . . 13 (𝑦 = 𝑡 → (𝑦(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛)))
6867eqeq2d 2620 . . . . . . . . . . . 12 (𝑦 = 𝑡 → ((𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑛)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))))
6966, 68rspc2ev 3295 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑡𝐴 ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑡(ball‘𝐷)(1 / 𝑛))) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7059, 62, 63, 69syl3anc 1318 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
71 ovex 6577 . . . . . . . . . . 11 (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ V
72 eqeq1 2614 . . . . . . . . . . . 12 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
73722rexbidv 3039 . . . . . . . . . . 11 (𝑧 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥)) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥))))
7415rnmpt2 6668 . . . . . . . . . . 11 ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) = {𝑧 ∣ ∃𝑥 ∈ ℕ ∃𝑦𝐴 𝑧 = (𝑦(ball‘𝐷)(1 / 𝑥))}
7571, 73, 74elab2 3323 . . . . . . . . . 10 ((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ↔ ∃𝑥 ∈ ℕ ∃𝑦𝐴 (𝑡(ball‘𝐷)(1 / 𝑛)) = (𝑦(ball‘𝐷)(1 / 𝑥)))
7670, 75sylibr 223 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
77 inss1 3795 . . . . . . . . . . 11 ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴) ⊆ (𝑧(ball‘𝐷)(1 / 𝑛))
7877, 61sseldi 3566 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)))
7945adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
8049adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ∈ ℝ*)
8141adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧𝑋)
8233adantr 480 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝐴𝑋)
8382, 62sseldd 3569 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑡𝑋)
84 blcom 22009 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1 / 𝑛) ∈ ℝ*) ∧ (𝑧𝑋𝑡𝑋)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8579, 80, 81, 83, 84syl22anc 1319 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡 ∈ (𝑧(ball‘𝐷)(1 / 𝑛)) ↔ 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
8678, 85mpbid 221 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)))
87 simprll 798 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → 𝑟 ∈ ℝ+)
8887adantr 480 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ+)
8988rphalfcld 11760 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ+)
9089rpxrd 11749 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑟 / 2) ∈ ℝ*)
91 simprrr 801 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) < (𝑟 / 2))
9287rphalfcld 11760 . . . . . . . . . . . . . 14 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑟 / 2) ∈ ℝ+)
93 rpre 11715 . . . . . . . . . . . . . . 15 ((1 / 𝑛) ∈ ℝ+ → (1 / 𝑛) ∈ ℝ)
94 rpre 11715 . . . . . . . . . . . . . . 15 ((𝑟 / 2) ∈ ℝ+ → (𝑟 / 2) ∈ ℝ)
95 ltle 10005 . . . . . . . . . . . . . . 15 (((1 / 𝑛) ∈ ℝ ∧ (𝑟 / 2) ∈ ℝ) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9693, 94, 95syl2an 493 . . . . . . . . . . . . . 14 (((1 / 𝑛) ∈ ℝ+ ∧ (𝑟 / 2) ∈ ℝ+) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9748, 92, 96syl2anc 691 . . . . . . . . . . . . 13 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ((1 / 𝑛) < (𝑟 / 2) → (1 / 𝑛) ≤ (𝑟 / 2)))
9891, 97mpd 15 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (1 / 𝑛) ≤ (𝑟 / 2))
9998adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (1 / 𝑛) ≤ (𝑟 / 2))
100 ssbl 22038 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ ((1 / 𝑛) ∈ ℝ* ∧ (𝑟 / 2) ∈ ℝ*) ∧ (1 / 𝑛) ≤ (𝑟 / 2)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
10179, 83, 80, 90, 99, 100syl221anc 1329 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ (𝑡(ball‘𝐷)(𝑟 / 2)))
10288rpred 11748 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑟 ∈ ℝ)
103101, 86sseldd 3569 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))
104 blhalf 22020 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑡𝑋) ∧ (𝑟 ∈ ℝ ∧ 𝑧 ∈ (𝑡(ball‘𝐷)(𝑟 / 2)))) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
10579, 83, 102, 103, 104syl22anc 1319 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ (𝑧(ball‘𝐷)𝑟))
106 simprlr 799 . . . . . . . . . . . 12 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
107106adantr 480 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)
108105, 107sstrd 3578 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(𝑟 / 2)) ⊆ 𝑢)
109101, 108sstrd 3578 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)
110 eleq2 2677 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑧𝑤𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛))))
111 sseq1 3589 . . . . . . . . . . 11 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → (𝑤𝑢 ↔ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢))
112110, 111anbi12d 743 . . . . . . . . . 10 (𝑤 = (𝑡(ball‘𝐷)(1 / 𝑛)) → ((𝑧𝑤𝑤𝑢) ↔ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)))
113112rspcev 3282 . . . . . . . . 9 (((𝑡(ball‘𝐷)(1 / 𝑛)) ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∧ (𝑧 ∈ (𝑡(ball‘𝐷)(1 / 𝑛)) ∧ (𝑡(ball‘𝐷)(1 / 𝑛)) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11476, 86, 109, 113syl12anc 1316 . . . . . . . 8 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) ∧ 𝑡 ∈ ((𝑧(ball‘𝐷)(1 / 𝑛)) ∩ 𝐴)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11558, 114exlimddv 1850 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ ((𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2)))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
116115anassrs 678 . . . . . 6 (((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝑟 / 2))) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11730, 116rexlimddv 3017 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) ∧ (𝑟 ∈ ℝ+ ∧ (𝑧(ball‘𝐷)𝑟) ⊆ 𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
11824, 117rexlimddv 3017 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) ∧ (𝑢𝐽𝑧𝑢)) → ∃𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
119118ralrimivva 2954 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢))
120 basgen2 20604 . . 3 ((𝐽 ∈ Top ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ⊆ 𝐽 ∧ ∀𝑢𝐽𝑧𝑢𝑤 ∈ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))(𝑧𝑤𝑤𝑢)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
1213, 19, 119, 120syl3anc 1318 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) = 𝐽)
122121, 3eqeltrd 2688 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
123 tgclb 20585 . . . 4 (ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ↔ (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ Top)
124122, 123sylibr 223 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases)
125 omelon 8426 . . . . . 6 ω ∈ On
126 simpr2 1061 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐴 ≼ ω)
127 nnex 10903 . . . . . . . . 9 ℕ ∈ V
128127xpdom2 7940 . . . . . . . 8 (𝐴 ≼ ω → (ℕ × 𝐴) ≼ (ℕ × ω))
129126, 128syl 17 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ (ℕ × ω))
130 nnenom 12641 . . . . . . . . 9 ℕ ≈ ω
131 omex 8423 . . . . . . . . . 10 ω ∈ V
132131enref 7874 . . . . . . . . 9 ω ≈ ω
133 xpen 8008 . . . . . . . . 9 ((ℕ ≈ ω ∧ ω ≈ ω) → (ℕ × ω) ≈ (ω × ω))
134130, 132, 133mp2an 704 . . . . . . . 8 (ℕ × ω) ≈ (ω × ω)
135 xpomen 8721 . . . . . . . 8 (ω × ω) ≈ ω
136134, 135entri 7896 . . . . . . 7 (ℕ × ω) ≈ ω
137 domentr 7901 . . . . . . 7 (((ℕ × 𝐴) ≼ (ℕ × ω) ∧ (ℕ × ω) ≈ ω) → (ℕ × 𝐴) ≼ ω)
138129, 136, 137sylancl 693 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ≼ ω)
139 ondomen 8743 . . . . . 6 ((ω ∈ On ∧ (ℕ × 𝐴) ≼ ω) → (ℕ × 𝐴) ∈ dom card)
140125, 138, 139sylancr 694 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (ℕ × 𝐴) ∈ dom card)
141 ffn 5958 . . . . . . 7 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)⟶𝐽 → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
14217, 141syl 17 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴))
143 dffn4 6034 . . . . . 6 ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) Fn (ℕ × 𝐴) ↔ (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
144142, 143sylib 207 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))))
145 fodomnum 8763 . . . . 5 ((ℕ × 𝐴) ∈ dom card → ((𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))):(ℕ × 𝐴)–onto→ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴)))
146140, 144, 145sylc 63 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴))
147 domtr 7895 . . . 4 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ (ℕ × 𝐴) ∧ (ℕ × 𝐴) ≼ ω) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
148146, 138, 147syl2anc 691 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω)
149 2ndci 21061 . . 3 ((ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ∈ TopBases ∧ ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥))) ≼ ω) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2nd𝜔)
150124, 148, 149syl2anc 691 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → (topGen‘ran (𝑥 ∈ ℕ, 𝑦𝐴 ↦ (𝑦(ball‘𝐷)(1 / 𝑥)))) ∈ 2nd𝜔)
151121, 150eqeltrrd 2689 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐴 ≼ ω ∧ ((cls‘𝐽)‘𝐴) = 𝑋)) → 𝐽 ∈ 2nd𝜔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874   cuni 4372   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  Oncon0 5640   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  cmpt2 6551  ωcom 6957  cen 7838  cdom 7839  cardccrd 8644  cr 9814  0cc0 9815  1c1 9816  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  cn 10897  2c2 10947  +crp 11708  topGenctg 15921  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557  Topctop 20517  TopBasesctb 20520  clsccl 20632  2nd𝜔c2ndc 21051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-2ndc 21053
This theorem is referenced by:  met2ndc  22138
  Copyright terms: Public domain W3C validator