MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efopn Structured version   Visualization version   GIF version

Theorem efopn 24204
Description: The exponential map is an open map. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
efopn.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
efopn (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)

Proof of Theorem efopn
Dummy variables 𝑤 𝑟 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efopn.j . . . . . . . 8 𝐽 = (TopOpen‘ℂfld)
21cnfldtopon 22396 . . . . . . 7 𝐽 ∈ (TopOn‘ℂ)
3 toponss 20544 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆𝐽) → 𝑆 ⊆ ℂ)
42, 3mpan 702 . . . . . 6 (𝑆𝐽𝑆 ⊆ ℂ)
54sselda 3568 . . . . 5 ((𝑆𝐽𝑥𝑆) → 𝑥 ∈ ℂ)
6 cnxmet 22386 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
7 pirp 24017 . . . . . . 7 π ∈ ℝ+
81cnfldtopn 22395 . . . . . . . 8 𝐽 = (MetOpen‘(abs ∘ − ))
98mopni3 22109 . . . . . . 7 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) ∧ π ∈ ℝ+) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
107, 9mpan2 703 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
116, 10mp3an1 1403 . . . . 5 ((𝑆𝐽𝑥𝑆) → ∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆))
12 imass2 5420 . . . . . . . 8 ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))
13 imassrn 5396 . . . . . . . . . . . . . 14 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ran exp
14 eff 14651 . . . . . . . . . . . . . . 15 exp:ℂ⟶ℂ
15 frn 5966 . . . . . . . . . . . . . . 15 (exp:ℂ⟶ℂ → ran exp ⊆ ℂ)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 ran exp ⊆ ℂ
1713, 16sstri 3577 . . . . . . . . . . . . 13 (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ
18 sseqin2 3779 . . . . . . . . . . . . 13 ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ ℂ ↔ (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
1917, 18mpbi 219 . . . . . . . . . . . 12 (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))
20 rpxr 11716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21 blssm 22033 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
226, 21mp3an1 1403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2320, 22sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2423ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
2524sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ ℂ)
26 simp-4l 802 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
2725, 26subcld 10271 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ ℂ)
2827subid1d 10260 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) − 0) = (𝑦𝑥))
2928fveq2d 6107 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑦𝑥) − 0)) = (abs‘(𝑦𝑥)))
30 0cn 9911 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
31 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (abs ∘ − ) = (abs ∘ − )
3231cnmetdval 22384 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3327, 30, 32sylancl 693 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (abs‘((𝑦𝑥) − 0)))
3431cnmetdval 22384 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3525, 26, 34syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) = (abs‘(𝑦𝑥)))
3629, 33, 353eqtr4d 2654 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) = (𝑦(abs ∘ − )𝑥))
37 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
386a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
39 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ+)
4039adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
4140rpxrd 11749 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
42 elbl3 22007 . . . . . . . . . . . . . . . . . . . . . 22 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4338, 41, 26, 25, 42syl22anc 1319 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ (𝑦(abs ∘ − )𝑥) < 𝑟))
4437, 43mpbid 221 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦(abs ∘ − )𝑥) < 𝑟)
4536, 44eqbrtrd 4605 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥)(abs ∘ − )0) < 𝑟)
46 0cnd 9912 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
47 elbl3 22007 . . . . . . . . . . . . . . . . . . . 20 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4838, 41, 46, 27, 47syl22anc 1319 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ ((𝑦𝑥)(abs ∘ − )0) < 𝑟))
4945, 48mpbird 246 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟))
50 efsub 14669 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
5125, 26, 50syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥)))
52 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝑦𝑥) → (exp‘𝑤) = (exp‘(𝑦𝑥)))
5352eqeq1d 2612 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝑦𝑥) → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))))
5453rspcev 3282 . . . . . . . . . . . . . . . . . 18 (((𝑦𝑥) ∈ (0(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑦𝑥)) = ((exp‘𝑦) / (exp‘𝑥))) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
5549, 51, 54syl2anc 691 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)))
56 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 ((exp‘𝑦) = 𝑧 → ((exp‘𝑦) / (exp‘𝑥)) = (𝑧 / (exp‘𝑥)))
5756eqeq2d 2620 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑦) = 𝑧 → ((exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ (exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5857rexbidv 3034 . . . . . . . . . . . . . . . . 17 ((exp‘𝑦) = 𝑧 → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = ((exp‘𝑦) / (exp‘𝑥)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
5955, 58syl5ibcom 234 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
6059rexlimdva 3013 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 → ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
61 eqcom 2617 . . . . . . . . . . . . . . . . . 18 ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ (𝑧 / (exp‘𝑥)) = (exp‘𝑤))
62 simplr 788 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑧 ∈ ℂ)
63 simp-4l 802 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑥 ∈ ℂ)
64 efcl 14652 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ∈ ℂ)
6639rpxrd 11749 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → 𝑟 ∈ ℝ*)
67 blssm 22033 . . . . . . . . . . . . . . . . . . . . . . 23 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 0 ∈ ℂ ∧ 𝑟 ∈ ℝ*) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
686, 30, 67mp3an12 1406 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 ∈ ℝ* → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
6966, 68syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ)
7069sselda 3568 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ ℂ)
71 efcl 14652 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ ℂ → (exp‘𝑤) ∈ ℂ)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑤) ∈ ℂ)
73 efne0 14666 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ → (exp‘𝑥) ≠ 0)
7463, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘𝑥) ≠ 0)
7562, 65, 72, 74divmuld 10702 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑧 / (exp‘𝑥)) = (exp‘𝑤) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7661, 75syl5bb 271 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) ↔ ((exp‘𝑥) · (exp‘𝑤)) = 𝑧))
7763, 70pncan2d 10273 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = 𝑤)
7870subid1d 10260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 − 0) = 𝑤)
7977, 78eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) − 𝑥) = (𝑤 − 0))
8079fveq2d 6107 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs‘((𝑥 + 𝑤) − 𝑥)) = (abs‘(𝑤 − 0)))
8163, 70addcld 9938 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ ℂ)
8231cnmetdval 22384 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 + 𝑤) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8381, 63, 82syl2anc 691 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (abs‘((𝑥 + 𝑤) − 𝑥)))
8431cnmetdval 22384 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ ℂ ∧ 0 ∈ ℂ) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8570, 30, 84sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) = (abs‘(𝑤 − 0)))
8680, 83, 853eqtr4d 2654 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) = (𝑤(abs ∘ − )0))
87 simpr 476 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟))
886a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (abs ∘ − ) ∈ (∞Met‘ℂ))
8939adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ+)
9089rpxrd 11749 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 𝑟 ∈ ℝ*)
91 0cnd 9912 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → 0 ∈ ℂ)
92 elbl3 22007 . . . . . . . . . . . . . . . . . . . . . . 23 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (0 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9388, 90, 91, 70, 92syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟) ↔ (𝑤(abs ∘ − )0) < 𝑟))
9487, 93mpbid 221 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑤(abs ∘ − )0) < 𝑟)
9586, 94eqbrtrd 4605 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟)
96 elbl3 22007 . . . . . . . . . . . . . . . . . . . . 21 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑟 ∈ ℝ*) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝑤) ∈ ℂ)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9788, 90, 63, 81, 96syl22anc 1319 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ↔ ((𝑥 + 𝑤)(abs ∘ − )𝑥) < 𝑟))
9895, 97mpbird 246 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
99 efadd 14663 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
10063, 70, 99syl2anc 691 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤)))
101 fveq2 6103 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑥 + 𝑤) → (exp‘𝑦) = (exp‘(𝑥 + 𝑤)))
102101eqeq1d 2612 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 + 𝑤) → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))))
103102rspcev 3282 . . . . . . . . . . . . . . . . . . 19 (((𝑥 + 𝑤) ∈ (𝑥(ball‘(abs ∘ − ))𝑟) ∧ (exp‘(𝑥 + 𝑤)) = ((exp‘𝑥) · (exp‘𝑤))) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
10498, 100, 103syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)))
105 eqeq2 2621 . . . . . . . . . . . . . . . . . . 19 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ((exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ (exp‘𝑦) = 𝑧))
106105rexbidv 3034 . . . . . . . . . . . . . . . . . 18 (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = ((exp‘𝑥) · (exp‘𝑤)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
107104, 106syl5ibcom 234 . . . . . . . . . . . . . . . . 17 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) · (exp‘𝑤)) = 𝑧 → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
10876, 107sylbid 229 . . . . . . . . . . . . . . . 16 (((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) ∧ 𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
109108rexlimdva 3013 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥)) → ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
11060, 109impbid 201 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧 ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
111 ffn 5958 . . . . . . . . . . . . . . . 16 (exp:ℂ⟶ℂ → exp Fn ℂ)
11214, 111ax-mp 5 . . . . . . . . . . . . . . 15 exp Fn ℂ
113 fvelimab 6163 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
114112, 24, 113sylancr 694 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑦 ∈ (𝑥(ball‘(abs ∘ − ))𝑟)(exp‘𝑦) = 𝑧))
115 fvelimab 6163 . . . . . . . . . . . . . . 15 ((exp Fn ℂ ∧ (0(ball‘(abs ∘ − ))𝑟) ⊆ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
116112, 69, 115sylancr 694 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → ((𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ↔ ∃𝑤 ∈ (0(ball‘(abs ∘ − ))𝑟)(exp‘𝑤) = (𝑧 / (exp‘𝑥))))
117110, 114, 1163bitr4d 299 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ↔ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
118117rabbi2dva 3783 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (ℂ ∩ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
11919, 118syl5eqr 2658 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))})
120 eqid 2610 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) = (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥)))
121120mptpreima 5545 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) = {𝑧 ∈ ℂ ∣ (𝑧 / (exp‘𝑥)) ∈ (exp “ (0(ball‘(abs ∘ − ))𝑟))}
122119, 121syl6eqr 2662 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) = ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))))
12364ad2antrr 758 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ ℂ)
12473ad2antrr 758 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ≠ 0)
125120divccncf 22517 . . . . . . . . . . . . 13 (((exp‘𝑥) ∈ ℂ ∧ (exp‘𝑥) ≠ 0) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
126123, 124, 125syl2anc 691 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (ℂ–cn→ℂ))
1271cncfcn1 22521 . . . . . . . . . . . 12 (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
128126, 127syl6eleq 2698 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽))
1291efopnlem2 24203 . . . . . . . . . . . 12 ((𝑟 ∈ ℝ+𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
130129adantll 746 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
131 cnima 20879 . . . . . . . . . . 11 (((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) ∈ (𝐽 Cn 𝐽) ∧ (exp “ (0(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
132128, 130, 131syl2anc 691 . . . . . . . . . 10 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑧 ∈ ℂ ↦ (𝑧 / (exp‘𝑥))) “ (exp “ (0(ball‘(abs ∘ − ))𝑟))) ∈ 𝐽)
133122, 132eqeltrd 2688 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽)
134 blcntr 22028 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
1356, 134mp3an1 1403 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟))
136 ffun 5961 . . . . . . . . . . . . 13 (exp:ℂ⟶ℂ → Fun exp)
13714, 136ax-mp 5 . . . . . . . . . . . 12 Fun exp
13814fdmi 5965 . . . . . . . . . . . . 13 dom exp = ℂ
13923, 138syl6sseqr 3615 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp)
140 funfvima2 6397 . . . . . . . . . . . 12 ((Fun exp ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ dom exp) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
141137, 139, 140sylancr 694 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (𝑥 ∈ (𝑥(ball‘(abs ∘ − ))𝑟) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
142135, 141mpd 15 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
143142adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)))
144 eleq2 2677 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → ((exp‘𝑥) ∈ 𝑦 ↔ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))))
145 sseq1 3589 . . . . . . . . . . . 12 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (𝑦 ⊆ (exp “ 𝑆) ↔ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆)))
146144, 145anbi12d 743 . . . . . . . . . . 11 (𝑦 = (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) → (((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))))
147146rspcev 3282 . . . . . . . . . 10 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ ((exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∧ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆))) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
148147expr 641 . . . . . . . . 9 (((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ∈ 𝐽 ∧ (exp‘𝑥) ∈ (exp “ (𝑥(ball‘(abs ∘ − ))𝑟))) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
149133, 143, 148syl2anc 691 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((exp “ (𝑥(ball‘(abs ∘ − ))𝑟)) ⊆ (exp “ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
15012, 149syl5 33 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) ∧ 𝑟 < π) → ((𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆 → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
151150expimpd 627 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑟 ∈ ℝ+) → ((𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
152151rexlimdva 3013 . . . . 5 (𝑥 ∈ ℂ → (∃𝑟 ∈ ℝ+ (𝑟 < π ∧ (𝑥(ball‘(abs ∘ − ))𝑟) ⊆ 𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
1535, 11, 152sylc 63 . . . 4 ((𝑆𝐽𝑥𝑆) → ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
154153ralrimiva 2949 . . 3 (𝑆𝐽 → ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆)))
155 eleq1 2676 . . . . . . 7 (𝑧 = (exp‘𝑥) → (𝑧𝑦 ↔ (exp‘𝑥) ∈ 𝑦))
156155anbi1d 737 . . . . . 6 (𝑧 = (exp‘𝑥) → ((𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
157156rexbidv 3034 . . . . 5 (𝑧 = (exp‘𝑥) → (∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∃𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
158157ralima 6402 . . . 4 ((exp Fn ℂ ∧ 𝑆 ⊆ ℂ) → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
159112, 4, 158sylancr 694 . . 3 (𝑆𝐽 → (∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)) ↔ ∀𝑥𝑆𝑦𝐽 ((exp‘𝑥) ∈ 𝑦𝑦 ⊆ (exp “ 𝑆))))
160154, 159mpbird 246 . 2 (𝑆𝐽 → ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
1611cnfldtop 22397 . . 3 𝐽 ∈ Top
162 eltop2 20590 . . 3 (𝐽 ∈ Top → ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆))))
163161, 162ax-mp 5 . 2 ((exp “ 𝑆) ∈ 𝐽 ↔ ∀𝑧 ∈ (exp “ 𝑆)∃𝑦𝐽 (𝑧𝑦𝑦 ⊆ (exp “ 𝑆)))
164160, 163sylibr 223 1 (𝑆𝐽 → (exp “ 𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  wss 3540   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815   + caddc 9818   · cmul 9820  *cxr 9952   < clt 9953  cmin 10145   / cdiv 10563  +crp 11708  abscabs 13822  expce 14631  πcpi 14636  TopOpenctopn 15905  ∞Metcxmt 19552  ballcbl 19554  fldccnfld 19567  Topctop 20517  TopOnctopon 20518   Cn ccn 20838  cnccncf 22487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator