Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimcnp3 | Structured version Visualization version GIF version |
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.) |
Ref | Expression |
---|---|
rlimcnp3.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
rlimcnp3.r | ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) |
rlimcnp3.s | ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) |
rlimcnp3.j | ⊢ 𝐽 = (TopOpen‘ℂfld) |
rlimcnp3.k | ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) |
Ref | Expression |
---|---|
rlimcnp3 | ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3587 | . . 3 ⊢ (0[,)+∞) ⊆ (0[,)+∞) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (0[,)+∞) ⊆ (0[,)+∞)) |
3 | 0e0icopnf 12153 | . . 3 ⊢ 0 ∈ (0[,)+∞) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ (0[,)+∞)) |
5 | rpssre 11719 | . . 3 ⊢ ℝ+ ⊆ ℝ | |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → ℝ+ ⊆ ℝ) |
7 | rlimcnp3.c | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
8 | rlimcnp3.r | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ) | |
9 | simpr 476 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+) | |
10 | rpreccl 11733 | . . . . . 6 ⊢ (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+) |
12 | 11 | rpred 11748 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ) |
13 | 11 | rpge0d 11752 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦)) |
14 | elrege0 12149 | . . . 4 ⊢ ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦))) | |
15 | 12, 13, 14 | sylanbrc 695 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞)) |
16 | 9, 15 | 2thd 254 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞))) |
17 | rlimcnp3.s | . 2 ⊢ (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅) | |
18 | rlimcnp3.j | . 2 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
19 | rlimcnp3.k | . 2 ⊢ 𝐾 = (𝐽 ↾t (0[,)+∞)) | |
20 | 2, 4, 6, 7, 8, 16, 17, 18, 19 | rlimcnp2 24493 | 1 ⊢ (𝜑 → ((𝑦 ∈ ℝ+ ↦ 𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 ifcif 4036 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 +∞cpnf 9950 ≤ cle 9954 / cdiv 10563 ℝ+crp 11708 [,)cico 12048 ⇝𝑟 crli 14064 ↾t crest 15904 TopOpenctopn 15905 ℂfldccnfld 19567 CnP ccnp 20839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ico 12052 df-fz 12198 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-rlim 14068 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-starv 15783 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-rest 15906 df-topn 15907 df-topgen 15927 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-cnp 20842 |
This theorem is referenced by: efrlim 24496 |
Copyright terms: Public domain | W3C validator |