MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Visualization version   GIF version

Theorem nrmhmph 21407
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))

Proof of Theorem nrmhmph
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 21389 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
2 n0 3890 . . 3 ((𝐽Homeo𝐾) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐽Homeo𝐾))
3 hmeocn 21373 . . . . . . . 8 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓 ∈ (𝐽 Cn 𝐾))
43adantl 481 . . . . . . 7 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝑓 ∈ (𝐽 Cn 𝐾))
5 cntop2 20855 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
64, 5syl 17 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Top)
7 simpll 786 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝐽 ∈ Nrm)
84adantr 480 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑓 ∈ (𝐽 Cn 𝐾))
9 simprl 790 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑥𝐾)
10 cnima 20879 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝑓𝑥) ∈ 𝐽)
118, 9, 10syl2anc 691 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑥) ∈ 𝐽)
12 inss1 3795 . . . . . . . . . . 11 ((Clsd‘𝐾) ∩ 𝒫 𝑥) ⊆ (Clsd‘𝐾)
13 simprr 792 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))
1412, 13sseldi 3566 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ (Clsd‘𝐾))
15 cnclima 20882 . . . . . . . . . 10 ((𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝑓𝑦) ∈ (Clsd‘𝐽))
168, 14, 15syl2anc 691 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ∈ (Clsd‘𝐽))
17 inss2 3796 . . . . . . . . . . . 12 ((Clsd‘𝐾) ∩ 𝒫 𝑥) ⊆ 𝒫 𝑥
1817, 13sseldi 3566 . . . . . . . . . . 11 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦 ∈ 𝒫 𝑥)
1918elpwid 4118 . . . . . . . . . 10 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → 𝑦𝑥)
20 imass2 5420 . . . . . . . . . 10 (𝑦𝑥 → (𝑓𝑦) ⊆ (𝑓𝑥))
2119, 20syl 17 . . . . . . . . 9 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → (𝑓𝑦) ⊆ (𝑓𝑥))
22 nrmsep3 20969 . . . . . . . . 9 ((𝐽 ∈ Nrm ∧ ((𝑓𝑥) ∈ 𝐽 ∧ (𝑓𝑦) ∈ (Clsd‘𝐽) ∧ (𝑓𝑦) ⊆ (𝑓𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
237, 11, 16, 21, 22syl13anc 1320 . . . . . . . 8 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑤𝐽 ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
24 simpllr 795 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓 ∈ (𝐽Homeo𝐾))
25 simprl 790 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤𝐽)
26 hmeoima 21378 . . . . . . . . . 10 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤𝐽) → (𝑓𝑤) ∈ 𝐾)
2724, 25, 26syl2anc 691 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑤) ∈ 𝐾)
28 simprrl 800 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓𝑦) ⊆ 𝑤)
29 eqid 2610 . . . . . . . . . . . . . 14 𝐽 = 𝐽
30 eqid 2610 . . . . . . . . . . . . . 14 𝐾 = 𝐾
3129, 30hmeof1o 21377 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽Homeo𝐾) → 𝑓: 𝐽1-1-onto 𝐾)
3224, 31syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑓: 𝐽1-1-onto 𝐾)
33 f1ofun 6052 . . . . . . . . . . . 12 (𝑓: 𝐽1-1-onto 𝐾 → Fun 𝑓)
3432, 33syl 17 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → Fun 𝑓)
3514adantr 480 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ∈ (Clsd‘𝐾))
3630cldss 20643 . . . . . . . . . . . . 13 (𝑦 ∈ (Clsd‘𝐾) → 𝑦 𝐾)
3735, 36syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 𝐾)
38 f1ofo 6057 . . . . . . . . . . . . 13 (𝑓: 𝐽1-1-onto 𝐾𝑓: 𝐽onto 𝐾)
39 forn 6031 . . . . . . . . . . . . 13 (𝑓: 𝐽onto 𝐾 → ran 𝑓 = 𝐾)
4032, 38, 393syl 18 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ran 𝑓 = 𝐾)
4137, 40sseqtr4d 3605 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ ran 𝑓)
42 funimass1 5885 . . . . . . . . . . 11 ((Fun 𝑓𝑦 ⊆ ran 𝑓) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4334, 41, 42syl2anc 691 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓𝑦) ⊆ 𝑤𝑦 ⊆ (𝑓𝑤)))
4428, 43mpd 15 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑦 ⊆ (𝑓𝑤))
45 elssuni 4403 . . . . . . . . . . . 12 (𝑤𝐽𝑤 𝐽)
4645ad2antrl 760 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝑤 𝐽)
4729hmeocls 21381 . . . . . . . . . . 11 ((𝑓 ∈ (𝐽Homeo𝐾) ∧ 𝑤 𝐽) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
4824, 46, 47syl2anc 691 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) = (𝑓 “ ((cls‘𝐽)‘𝑤)))
49 simprrr 801 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥))
50 nrmtop 20950 . . . . . . . . . . . . . . 15 (𝐽 ∈ Nrm → 𝐽 ∈ Top)
5150ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → 𝐽 ∈ Top)
5229clsss3 20673 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝑤 𝐽) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
5351, 46, 52syl2anc 691 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ 𝐽)
54 f1odm 6054 . . . . . . . . . . . . . 14 (𝑓: 𝐽1-1-onto 𝐾 → dom 𝑓 = 𝐽)
5532, 54syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → dom 𝑓 = 𝐽)
5653, 55sseqtr4d 3605 . . . . . . . . . . . 12 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓)
57 funimass3 6241 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((cls‘𝐽)‘𝑤) ⊆ dom 𝑓) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5834, 56, 57syl2anc 691 . . . . . . . . . . 11 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥 ↔ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))
5949, 58mpbird 246 . . . . . . . . . 10 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → (𝑓 “ ((cls‘𝐽)‘𝑤)) ⊆ 𝑥)
6048, 59eqsstrd 3602 . . . . . . . . 9 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)
61 sseq2 3590 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (𝑦𝑧𝑦 ⊆ (𝑓𝑤)))
62 fveq2 6103 . . . . . . . . . . . 12 (𝑧 = (𝑓𝑤) → ((cls‘𝐾)‘𝑧) = ((cls‘𝐾)‘(𝑓𝑤)))
6362sseq1d 3595 . . . . . . . . . . 11 (𝑧 = (𝑓𝑤) → (((cls‘𝐾)‘𝑧) ⊆ 𝑥 ↔ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥))
6461, 63anbi12d 743 . . . . . . . . . 10 (𝑧 = (𝑓𝑤) → ((𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥) ↔ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)))
6564rspcev 3282 . . . . . . . . 9 (((𝑓𝑤) ∈ 𝐾 ∧ (𝑦 ⊆ (𝑓𝑤) ∧ ((cls‘𝐾)‘(𝑓𝑤)) ⊆ 𝑥)) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6627, 44, 60, 65syl12anc 1316 . . . . . . . 8 ((((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) ∧ (𝑤𝐽 ∧ ((𝑓𝑦) ⊆ 𝑤 ∧ ((cls‘𝐽)‘𝑤) ⊆ (𝑓𝑥)))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6723, 66rexlimddv 3017 . . . . . . 7 (((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) ∧ (𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥))) → ∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
6867ralrimivva 2954 . . . . . 6 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥))
69 isnrm 20949 . . . . . 6 (𝐾 ∈ Nrm ↔ (𝐾 ∈ Top ∧ ∀𝑥𝐾𝑦 ∈ ((Clsd‘𝐾) ∩ 𝒫 𝑥)∃𝑧𝐾 (𝑦𝑧 ∧ ((cls‘𝐾)‘𝑧) ⊆ 𝑥)))
706, 68, 69sylanbrc 695 . . . . 5 ((𝐽 ∈ Nrm ∧ 𝑓 ∈ (𝐽Homeo𝐾)) → 𝐾 ∈ Nrm)
7170expcom 450 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
7271exlimiv 1845 . . 3 (∃𝑓 𝑓 ∈ (𝐽Homeo𝐾) → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
732, 72sylbi 206 . 2 ((𝐽Homeo𝐾) ≠ ∅ → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
741, 73sylbi 206 1 (𝐽𝐾 → (𝐽 ∈ Nrm → 𝐾 ∈ Nrm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Topctop 20517  Clsdccld 20630  clsccl 20632   Cn ccn 20838  Nrmcnrm 20924  Homeochmeo 21366  chmph 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-map 7746  df-top 20521  df-topon 20523  df-cld 20633  df-cls 20635  df-cn 20841  df-nrm 20931  df-hmeo 21368  df-hmph 21369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator