MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclima Structured version   Visualization version   GIF version

Theorem cnclima 20882
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2610 . . . . . 6 𝐽 = 𝐽
2 eqid 2610 . . . . . 6 𝐾 = 𝐾
31, 2cnf 20860 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
43adantr 480 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹: 𝐽 𝐾)
5 ffun 5961 . . . . . 6 (𝐹: 𝐽 𝐾 → Fun 𝐹)
6 funcnvcnv 5870 . . . . . 6 (Fun 𝐹 → Fun 𝐹)
7 imadif 5887 . . . . . 6 (Fun 𝐹 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
85, 6, 73syl 18 . . . . 5 (𝐹: 𝐽 𝐾 → (𝐹 “ ( 𝐾𝐴)) = ((𝐹 𝐾) ∖ (𝐹𝐴)))
9 fimacnv 6255 . . . . . 6 (𝐹: 𝐽 𝐾 → (𝐹 𝐾) = 𝐽)
109difeq1d 3689 . . . . 5 (𝐹: 𝐽 𝐾 → ((𝐹 𝐾) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
118, 10eqtr2d 2645 . . . 4 (𝐹: 𝐽 𝐾 → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
124, 11syl 17 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) = (𝐹 “ ( 𝐾𝐴)))
132cldopn 20645 . . . 4 (𝐴 ∈ (Clsd‘𝐾) → ( 𝐾𝐴) ∈ 𝐾)
14 cnima 20879 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ( 𝐾𝐴) ∈ 𝐾) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1513, 14sylan2 490 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹 “ ( 𝐾𝐴)) ∈ 𝐽)
1612, 15eqeltrd 2688 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽)
17 cntop1 20854 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1817adantr 480 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐽 ∈ Top)
19 cnvimass 5404 . . . 4 (𝐹𝐴) ⊆ dom 𝐹
20 fdm 5964 . . . . 5 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
214, 20syl 17 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → dom 𝐹 = 𝐽)
2219, 21syl5sseq 3616 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ⊆ 𝐽)
231iscld2 20642 . . 3 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2418, 22, 23syl2anc 691 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
2516, 24mpbird 246 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (𝐹𝐴) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cdif 3537  wss 3540   cuni 4372  ccnv 5037  dom cdm 5038  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  Clsdccld 20630   Cn ccn 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cld 20633  df-cn 20841
This theorem is referenced by:  iscncl  20883  cncls2i  20884  paste  20908  cnt1  20964  dnsconst  20992  cnconn  21035  hauseqlcld  21259  txcon  21302  imasncld  21304  r0cld  21351  kqreglem2  21355  kqnrmlem1  21356  kqnrmlem2  21357  hmeocld  21380  nrmhmph  21407  tgphaus  21730  csscld  22856  clsocv  22857  hmeoclda  31498  hmeocldb  31499  rfcnpre3  38215  rfcnpre4  38216
  Copyright terms: Public domain W3C validator