MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhmph Structured version   Unicode version

Theorem nrmhmph 20161
Description: Normality is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
nrmhmph  |-  ( J  ~=  K  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )

Proof of Theorem nrmhmph
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmph 20143 . 2  |-  ( J  ~=  K  <->  ( J Homeo K )  =/=  (/) )
2 n0 3799 . . 3  |-  ( ( J Homeo K )  =/=  (/) 
<->  E. f  f  e.  ( J Homeo K ) )
3 hmeocn 20127 . . . . . . . 8  |-  ( f  e.  ( J Homeo K )  ->  f  e.  ( J  Cn  K
) )
43adantl 466 . . . . . . 7  |-  ( ( J  e.  Nrm  /\  f  e.  ( J Homeo K ) )  -> 
f  e.  ( J  Cn  K ) )
5 cntop2 19608 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  K  e.  Top )
64, 5syl 16 . . . . . 6  |-  ( ( J  e.  Nrm  /\  f  e.  ( J Homeo K ) )  ->  K  e.  Top )
7 simpll 753 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  J  e.  Nrm )
84adantr 465 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  f  e.  ( J  Cn  K
) )
9 simprl 755 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  x  e.  K )
10 cnima 19632 . . . . . . . . . 10  |-  ( ( f  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' f "
x )  e.  J
)
118, 9, 10syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " x )  e.  J )
12 inss1 3723 . . . . . . . . . . 11  |-  ( (
Clsd `  K )  i^i  ~P x )  C_  ( Clsd `  K )
13 simprr 756 . . . . . . . . . . 11  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) )
1412, 13sseldi 3507 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ( Clsd `  K )
)
15 cnclima 19635 . . . . . . . . . 10  |-  ( ( f  e.  ( J  Cn  K )  /\  y  e.  ( Clsd `  K ) )  -> 
( `' f "
y )  e.  (
Clsd `  J )
)
168, 14, 15syl2anc 661 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " y )  e.  ( Clsd `  J
) )
17 inss2 3724 . . . . . . . . . . . 12  |-  ( (
Clsd `  K )  i^i  ~P x )  C_  ~P x
1817, 13sseldi 3507 . . . . . . . . . . 11  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  e.  ~P x )
1918elpwid 4026 . . . . . . . . . 10  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  y  C_  x )
20 imass2 5378 . . . . . . . . . 10  |-  ( y 
C_  x  ->  ( `' f " y
)  C_  ( `' f " x ) )
2119, 20syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  ( `' f " y )  C_  ( `' f " x
) )
22 nrmsep3 19722 . . . . . . . . 9  |-  ( ( J  e.  Nrm  /\  ( ( `' f
" x )  e.  J  /\  ( `' f " y )  e.  ( Clsd `  J
)  /\  ( `' f " y )  C_  ( `' f " x
) ) )  ->  E. w  e.  J  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) )
237, 11, 16, 21, 22syl13anc 1230 . . . . . . . 8  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  E. w  e.  J  ( ( `' f " y
)  C_  w  /\  ( ( cls `  J
) `  w )  C_  ( `' f "
x ) ) )
24 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  f  e.  ( J Homeo K ) )
25 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  w  e.  J )
26 hmeoima 20132 . . . . . . . . . 10  |-  ( ( f  e.  ( J
Homeo K )  /\  w  e.  J )  ->  (
f " w )  e.  K )
2724, 25, 26syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
f " w )  e.  K )
28 simprrl 763 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  ( `' f " y
)  C_  w )
29 eqid 2467 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
30 eqid 2467 . . . . . . . . . . . . . 14  |-  U. K  =  U. K
3129, 30hmeof1o 20131 . . . . . . . . . . . . 13  |-  ( f  e.  ( J Homeo K )  ->  f : U. J -1-1-onto-> U. K )
3224, 31syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  f : U. J -1-1-onto-> U. K )
33 f1ofun 5824 . . . . . . . . . . . 12  |-  ( f : U. J -1-1-onto-> U. K  ->  Fun  f )
3432, 33syl 16 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  Fun  f )
3514adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  e.  ( Clsd `  K
) )
3630cldss 19396 . . . . . . . . . . . . 13  |-  ( y  e.  ( Clsd `  K
)  ->  y  C_  U. K )
3735, 36syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_ 
U. K )
38 f1ofo 5829 . . . . . . . . . . . . 13  |-  ( f : U. J -1-1-onto-> U. K  ->  f : U. J -onto-> U. K )
39 forn 5804 . . . . . . . . . . . . 13  |-  ( f : U. J -onto-> U. K  ->  ran  f  =  U. K )
4032, 38, 393syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  ran  f  =  U. K )
4137, 40sseqtr4d 3546 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_ 
ran  f )
42 funimass1 5667 . . . . . . . . . . 11  |-  ( ( Fun  f  /\  y  C_ 
ran  f )  -> 
( ( `' f
" y )  C_  w  ->  y  C_  (
f " w ) ) )
4334, 41, 42syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( `' f "
y )  C_  w  ->  y  C_  ( f " w ) ) )
4428, 43mpd 15 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  y  C_  ( f " w
) )
45 elssuni 4281 . . . . . . . . . . . 12  |-  ( w  e.  J  ->  w  C_ 
U. J )
4645ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  w  C_ 
U. J )
4729hmeocls 20135 . . . . . . . . . . 11  |-  ( ( f  e.  ( J
Homeo K )  /\  w  C_ 
U. J )  -> 
( ( cls `  K
) `  ( f " w ) )  =  ( f "
( ( cls `  J
) `  w )
) )
4824, 46, 47syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  K
) `  ( f " w ) )  =  ( f "
( ( cls `  J
) `  w )
) )
49 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_  ( `' f "
x ) )
50 nrmtop 19703 . . . . . . . . . . . . . . 15  |-  ( J  e.  Nrm  ->  J  e.  Top )
5150ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  J  e.  Top )
5229clsss3 19426 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  w  C_  U. J )  ->  ( ( cls `  J ) `  w
)  C_  U. J )
5351, 46, 52syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_ 
U. J )
54 f1odm 5826 . . . . . . . . . . . . . 14  |-  ( f : U. J -1-1-onto-> U. K  ->  dom  f  =  U. J )
5532, 54syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  dom  f  =  U. J )
5653, 55sseqtr4d 3546 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  J
) `  w )  C_ 
dom  f )
57 funimass3 6004 . . . . . . . . . . . 12  |-  ( ( Fun  f  /\  (
( cls `  J
) `  w )  C_ 
dom  f )  -> 
( ( f "
( ( cls `  J
) `  w )
)  C_  x  <->  ( ( cls `  J ) `  w )  C_  ( `' f " x
) ) )
5834, 56, 57syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( f " (
( cls `  J
) `  w )
)  C_  x  <->  ( ( cls `  J ) `  w )  C_  ( `' f " x
) ) )
5949, 58mpbird 232 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
f " ( ( cls `  J ) `
 w ) ) 
C_  x )
6048, 59eqsstrd 3543 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  (
( cls `  K
) `  ( f " w ) ) 
C_  x )
61 sseq2 3531 . . . . . . . . . . 11  |-  ( z  =  ( f "
w )  ->  (
y  C_  z  <->  y  C_  ( f " w
) ) )
62 fveq2 5872 . . . . . . . . . . . 12  |-  ( z  =  ( f "
w )  ->  (
( cls `  K
) `  z )  =  ( ( cls `  K ) `  (
f " w ) ) )
6362sseq1d 3536 . . . . . . . . . . 11  |-  ( z  =  ( f "
w )  ->  (
( ( cls `  K
) `  z )  C_  x  <->  ( ( cls `  K ) `  (
f " w ) )  C_  x )
)
6461, 63anbi12d 710 . . . . . . . . . 10  |-  ( z  =  ( f "
w )  ->  (
( y  C_  z  /\  ( ( cls `  K
) `  z )  C_  x )  <->  ( y  C_  ( f " w
)  /\  ( ( cls `  K ) `  ( f " w
) )  C_  x
) ) )
6564rspcev 3219 . . . . . . . . 9  |-  ( ( ( f " w
)  e.  K  /\  ( y  C_  (
f " w )  /\  ( ( cls `  K ) `  (
f " w ) )  C_  x )
)  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6627, 44, 60, 65syl12anc 1226 . . . . . . . 8  |-  ( ( ( ( J  e. 
Nrm  /\  f  e.  ( J Homeo K ) )  /\  ( x  e.  K  /\  y  e.  ( ( Clsd `  K
)  i^i  ~P x
) ) )  /\  ( w  e.  J  /\  ( ( `' f
" y )  C_  w  /\  ( ( cls `  J ) `  w
)  C_  ( `' f " x ) ) ) )  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6723, 66rexlimddv 2963 . . . . . . 7  |-  ( ( ( J  e.  Nrm  /\  f  e.  ( J
Homeo K ) )  /\  ( x  e.  K  /\  y  e.  (
( Clsd `  K )  i^i  ~P x ) ) )  ->  E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `
 z )  C_  x ) )
6867ralrimivva 2888 . . . . . 6  |-  ( ( J  e.  Nrm  /\  f  e.  ( J Homeo K ) )  ->  A. x  e.  K  A. y  e.  (
( Clsd `  K )  i^i  ~P x ) E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K
) `  z )  C_  x ) )
69 isnrm 19702 . . . . . 6  |-  ( K  e.  Nrm  <->  ( K  e.  Top  /\  A. x  e.  K  A. y  e.  ( ( Clsd `  K
)  i^i  ~P x
) E. z  e.  K  ( y  C_  z  /\  ( ( cls `  K ) `  z
)  C_  x )
) )
706, 68, 69sylanbrc 664 . . . . 5  |-  ( ( J  e.  Nrm  /\  f  e.  ( J Homeo K ) )  ->  K  e.  Nrm )
7170expcom 435 . . . 4  |-  ( f  e.  ( J Homeo K )  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )
7271exlimiv 1698 . . 3  |-  ( E. f  f  e.  ( J Homeo K )  -> 
( J  e.  Nrm  ->  K  e.  Nrm )
)
732, 72sylbi 195 . 2  |-  ( ( J Homeo K )  =/=  (/)  ->  ( J  e. 
Nrm  ->  K  e.  Nrm ) )
741, 73sylbi 195 1  |-  ( J  ~=  K  ->  ( J  e.  Nrm  ->  K  e.  Nrm ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    i^i cin 3480    C_ wss 3481   (/)c0 3790   ~Pcpw 4016   U.cuni 4251   class class class wbr 4453   `'ccnv 5004   dom cdm 5005   ran crn 5006   "cima 5008   Fun wfun 5588   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6295   Topctop 19261   Clsdccld 19383   clsccl 19385    Cn ccn 19591   Nrmcnrm 19677   Homeochmeo 20120    ~= chmph 20121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-1o 7142  df-map 7434  df-top 19266  df-topon 19269  df-cld 19386  df-cls 19388  df-cn 19594  df-nrm 19684  df-hmeo 20122  df-hmph 20123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator