MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmsep3 Structured version   Visualization version   GIF version

Theorem nrmsep3 20969
Description: In a normal space, given a closed set 𝐵 inside an open set 𝐴, there is an open set 𝑥 such that 𝐵𝑥 ⊆ cls(𝑥) ⊆ 𝐴. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmsep3 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽

Proof of Theorem nrmsep3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnrm 20949 . . . . . 6 (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)))
21simprbi 479 . . . . 5 (𝐽 ∈ Nrm → ∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))
3 pweq 4111 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
43ineq2d 3776 . . . . . . 7 (𝑦 = 𝐴 → ((Clsd‘𝐽) ∩ 𝒫 𝑦) = ((Clsd‘𝐽) ∩ 𝒫 𝐴))
5 sseq2 3590 . . . . . . . . 9 (𝑦 = 𝐴 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
65anbi2d 736 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
76rexbidv 3034 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
84, 7raleqbidv 3129 . . . . . 6 (𝑦 = 𝐴 → (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
98rspccv 3279 . . . . 5 (∀𝑦𝐽𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
102, 9syl 17 . . . 4 (𝐽 ∈ Nrm → (𝐴𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
11 elin 3758 . . . . . 6 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴))
12 elpwg 4116 . . . . . . 7 (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
1312pm5.32i 667 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
1411, 13bitri 263 . . . . 5 (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴))
15 sseq1 3589 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
1615anbi1d 737 . . . . . . 7 (𝑧 = 𝐵 → ((𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1716rexbidv 3034 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1817rspccv 3279 . . . . 5 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
1914, 18syl5bir 232 . . . 4 (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥𝐽 (𝑧𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))
2010, 19syl6 34 . . 3 (𝐽 ∈ Nrm → (𝐴𝐽 → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))))
2120exp4a 631 . 2 (𝐽 ∈ Nrm → (𝐴𝐽 → (𝐵 ∈ (Clsd‘𝐽) → (𝐵𝐴 → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))))
22213imp2 1274 1 ((𝐽 ∈ Nrm ∧ (𝐴𝐽𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵𝐴)) → ∃𝑥𝐽 (𝐵𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  wss 3540  𝒫 cpw 4108  cfv 5804  Topctop 20517  Clsdccld 20630  clsccl 20632  Nrmcnrm 20924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-nrm 20931
This theorem is referenced by:  nrmsep2  20970  kqnrmlem1  21356  kqnrmlem2  21357  nrmr0reg  21362  nrmhmph  21407
  Copyright terms: Public domain W3C validator