Step | Hyp | Ref
| Expression |
1 | | isnrm 20949 |
. . . . . 6
⊢ (𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦))) |
2 | 1 | simprbi 479 |
. . . . 5
⊢ (𝐽 ∈ Nrm → ∀𝑦 ∈ 𝐽 ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦)) |
3 | | pweq 4111 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) |
4 | 3 | ineq2d 3776 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((Clsd‘𝐽) ∩ 𝒫 𝑦) = ((Clsd‘𝐽) ∩ 𝒫 𝐴)) |
5 | | sseq2 3590 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (((cls‘𝐽)‘𝑥) ⊆ 𝑦 ↔ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) |
6 | 5 | anbi2d 736 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
7 | 6 | rexbidv 3034 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
8 | 4, 7 | raleqbidv 3129 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) ↔ ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
9 | 8 | rspccv 3279 |
. . . . 5
⊢
(∀𝑦 ∈
𝐽 ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑦)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑦) → (𝐴 ∈ 𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
10 | 2, 9 | syl 17 |
. . . 4
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → ∀𝑧 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
11 | | elin 3758 |
. . . . . 6
⊢ (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴)) |
12 | | elpwg 4116 |
. . . . . . 7
⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴)) |
13 | 12 | pm5.32i 667 |
. . . . . 6
⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) |
14 | 11, 13 | bitri 263 |
. . . . 5
⊢ (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) ↔ (𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) |
15 | | sseq1 3589 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧 ⊆ 𝑥 ↔ 𝐵 ⊆ 𝑥)) |
16 | 15 | anbi1d 737 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → ((𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
17 | 16 | rexbidv 3034 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
18 | 17 | rspccv 3279 |
. . . . 5
⊢
(∀𝑧 ∈
((Clsd‘𝐽) ∩
𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → (𝐵 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
19 | 14, 18 | syl5bir 232 |
. . . 4
⊢
(∀𝑧 ∈
((Clsd‘𝐽) ∩
𝒫 𝐴)∃𝑥 ∈ 𝐽 (𝑧 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴) → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))) |
20 | 10, 19 | syl6 34 |
. . 3
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → ((𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)))) |
21 | 20 | exp4a 631 |
. 2
⊢ (𝐽 ∈ Nrm → (𝐴 ∈ 𝐽 → (𝐵 ∈ (Clsd‘𝐽) → (𝐵 ⊆ 𝐴 → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴))))) |
22 | 21 | 3imp2 1274 |
1
⊢ ((𝐽 ∈ Nrm ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽) ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝐵 ⊆ 𝑥 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝐴)) |