MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfm Structured version   Visualization version   GIF version

Theorem rnelfm 21567
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
rnelfm ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))

Proof of Theorem rnelfm
Dummy variables 𝑏 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filtop 21469 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
213ad2ant2 1076 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
3 simp1 1054 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌𝐴)
4 simp3 1056 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
5 fmf 21559 . . . . . 6 ((𝑋𝐿𝑌𝐴𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
62, 3, 4, 5syl3anc 1318 . . . . 5 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
7 ffn 5958 . . . . 5 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
86, 7syl 17 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
9 fvelrnb 6153 . . . 4 ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
108, 9syl 17 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
11 ffn 5958 . . . . . . . . . . . 12 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
12 dffn4 6034 . . . . . . . . . . . 12 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
1311, 12sylib 207 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
14 foima 6033 . . . . . . . . . . 11 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
1513, 14syl 17 . . . . . . . . . 10 (𝐹:𝑌𝑋 → (𝐹𝑌) = ran 𝐹)
1615ad2antlr 759 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) = ran 𝐹)
17 simpll 786 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐿)
18 simpr 476 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
19 simplr 788 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
20 fgcl 21492 . . . . . . . . . . . 12 (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌))
21 filtop 21469 . . . . . . . . . . . 12 ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2220, 21syl 17 . . . . . . . . . . 11 (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2322adantl 481 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏))
24 eqid 2610 . . . . . . . . . . 11 (𝑌filGen𝑏) = (𝑌filGen𝑏)
2524imaelfm 21565 . . . . . . . . . 10 (((𝑋𝐿𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2617, 18, 19, 23, 25syl31anc 1321 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2716, 26eqeltrrd 2689 . . . . . . . 8 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏))
28 eleq2 2677 . . . . . . . 8 (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹𝐿))
2927, 28syl5ibcom 234 . . . . . . 7 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3029ex 449 . . . . . 6 ((𝑋𝐿𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
311, 30sylan 487 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
32313adant1 1072 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
3332rexlimdv 3012 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3410, 33sylbid 229 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹𝐿))
35 simpl2 1058 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ (Fil‘𝑋))
36 filelss 21466 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
3736ex 449 . . . . . . . . 9 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
3835, 37syl 17 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡𝑋))
39 simpr 476 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → 𝑡𝐿)
40 eqidd 2611 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) = (𝐹𝑡))
41 imaeq2 5381 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
4241eqeq2d 2620 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((𝐹𝑡) = (𝐹𝑥) ↔ (𝐹𝑡) = (𝐹𝑡)))
4342rspcev 3282 . . . . . . . . . . . 12 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
4439, 40, 43syl2anc 691 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
45 simpl1 1057 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
46 cnvimass 5404 . . . . . . . . . . . . . . . . 17 (𝐹𝑡) ⊆ dom 𝐹
47 fdm 5964 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4846, 47syl5sseq 3616 . . . . . . . . . . . . . . . 16 (𝐹:𝑌𝑋 → (𝐹𝑡) ⊆ 𝑌)
49483ad2ant3 1077 . . . . . . . . . . . . . . 15 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹𝑡) ⊆ 𝑌)
5049adantr 480 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ⊆ 𝑌)
5145, 50ssexd 4733 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ∈ V)
52 eqid 2610 . . . . . . . . . . . . . 14 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
5352elrnmpt 5293 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5451, 53syl 17 . . . . . . . . . . . 12 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5554adantr 480 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5644, 55mpbird 246 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
57 ssid 3587 . . . . . . . . . . 11 (𝐹𝑡) ⊆ (𝐹𝑡)
58 ffun 5961 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → Fun 𝐹)
59583ad2ant3 1077 . . . . . . . . . . . . 13 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
6059ad2antrr 758 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → Fun 𝐹)
61 funimass3 6241 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6260, 46, 61sylancl 693 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6357, 62mpbiri 247 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
64 imaeq2 5381 . . . . . . . . . . . 12 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
6564sseq1d 3595 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
6665rspcev 3282 . . . . . . . . . 10 (((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6756, 63, 66syl2anc 691 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6867ex 449 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡))
6938, 68jcad 554 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
7035adantr 480 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
71 vex 3176 . . . . . . . . . . . . . . 15 𝑠 ∈ V
7252elrnmpt 5293 . . . . . . . . . . . . . . 15 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
74 ssid 3587 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑥) ⊆ (𝐹𝑥)
7559ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → Fun 𝐹)
76 cnvimass 5404 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹𝑥) ⊆ dom 𝐹
77 funimass3 6241 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7875, 76, 77sylancl 693 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7974, 78mpbiri 247 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ 𝑥)
80 imassrn 5396 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹
8179, 80jctir 559 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹))
82 ssin 3797 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
8381, 82sylib 207 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
84 elin 3758 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧𝑥𝑧 ∈ ran 𝐹))
85 fvelrnb 6153 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8611, 85syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑌𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
87863ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8887ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8975ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → Fun 𝐹)
9089, 76jctir 559 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹))
9159ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → Fun 𝐹)
9291ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → Fun 𝐹)
93473ad2ant3 1077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
9493ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → dom 𝐹 = 𝑌)
9594eleq2d 2673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ dom 𝐹𝑦𝑌))
9695biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → 𝑦 ∈ dom 𝐹)
97 fvimacnv 6240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9892, 96, 97syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9998biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦 ∈ (𝐹𝑥))
100 funfvima2 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (𝐹𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
10190, 99, 100sylc 63 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)))
102101ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
103 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝑥𝑧𝑥))
104 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)) ↔ 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
105103, 104imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑧 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))) ↔ (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
106102, 105syl5ibcom 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
107106rexlimdva 3013 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (∃𝑦𝑌 (𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
10888, 107sylbid 229 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
109108com23 84 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧𝑥 → (𝑧 ∈ ran 𝐹𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
110109impd 446 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑧𝑥𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
11184, 110syl5bi 231 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
112111ssrdv 3574 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (𝐹𝑥)))
11383, 112eqssd 3585 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) = (𝑥 ∩ ran 𝐹))
114 filin 21468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
1151143exp 1256 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 → (ran 𝐹𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
116115com23 84 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
1171163ad2ant2 1076 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
118117imp31 447 . . . . . . . . . . . . . . . . . . 19 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
119118adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
120113, 119eqeltrd 2688 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)
121120exp32 629 . . . . . . . . . . . . . . . 16 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
122 imaeq2 5381 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
123122sseq1d 3595 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
124122eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ∈ 𝐿 ↔ (𝐹 “ (𝐹𝑥)) ∈ 𝐿))
125124imbi2d 329 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝑡𝑋 → (𝐹𝑠) ∈ 𝐿) ↔ (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
126123, 125imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿))))
127121, 126syl5ibrcom 236 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
128127rexlimdva 3013 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
12973, 128syl5bi 231 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
130129imp44 620 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ∈ 𝐿)
131 simprr 792 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝑋)
132 simprlr 799 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ⊆ 𝑡)
133 filss 21467 . . . . . . . . . . . 12 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹𝑠) ∈ 𝐿𝑡𝑋 ∧ (𝐹𝑠) ⊆ 𝑡)) → 𝑡𝐿)
13470, 130, 131, 132, 133syl13anc 1320 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝐿)
135134exp44 639 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
136135rexlimdv 3012 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
137136com23 84 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝑋 → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡𝑡𝐿)))
138137impd 446 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
13969, 138impbid 201 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
1402adantr 480 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
141 rnelfmlem 21566 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
142 simpl3 1059 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
143 elfm 21561 . . . . . . 7 ((𝑋𝐿 ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
144140, 141, 142, 143syl3anc 1318 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
145139, 144bitr4d 270 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥)))))
146145eqrdv 2608 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))))
1478adantr 480 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
148 fnfvelrn 6264 . . . . 5 (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
149147, 141, 148syl2anc 691 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
150146, 149eqeltrd 2688 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹))
151150ex 449 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿𝐿 ∈ ran (𝑋 FilMap 𝐹)))
15234, 151impbid 201 1 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cin 3539  wss 3540  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  fBascfbas 19555  filGencfg 19556  Filcfil 21459   FilMap cfm 21547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-fg 19565  df-fil 21460  df-fm 21552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator