MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basqtop Structured version   Visualization version   GIF version

Theorem basqtop 21324
Description: An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
basqtop ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)

Proof of Theorem basqtop
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ofo 6057 . . . . 5 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋onto𝑌)
2 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
32elqtop2 21314 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
42elqtop2 21314 . . . . . 6 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
53, 4anbi12d 743 . . . . 5 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
61, 5sylan2 490 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) ↔ ((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽))))
7 simpl1l 1105 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐽 ∈ TopBases)
8 simpl2r 1108 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑥) ∈ 𝐽)
9 simpl3r 1110 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑦) ∈ 𝐽)
10 simpl1r 1106 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹:𝑋1-1-onto𝑌)
11 f1ocnv 6062 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
12 f1ofn 6051 . . . . . . . . . . . 12 (𝐹:𝑌1-1-onto𝑋𝐹 Fn 𝑌)
1310, 11, 123syl 18 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝐹 Fn 𝑌)
14 simpl2l 1107 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑥𝑌)
15 inss1 3795 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
16 simpr 476 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ∈ (𝑥𝑦))
1715, 16sseldi 3566 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑥)
18 fnfvima 6400 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑥𝑌𝑧𝑥) → (𝐹𝑧) ∈ (𝐹𝑥))
1913, 14, 17, 18syl3anc 1318 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑥))
20 simpl3l 1109 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑦𝑌)
21 inss2 3796 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
2221, 16sseldi 3566 . . . . . . . . . . 11 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑦)
23 fnfvima 6400 . . . . . . . . . . 11 ((𝐹 Fn 𝑌𝑦𝑌𝑧𝑦) → (𝐹𝑧) ∈ (𝐹𝑦))
2413, 20, 22, 23syl3anc 1318 . . . . . . . . . 10 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ (𝐹𝑦))
2519, 24elind 3760 . . . . . . . . 9 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))
26 basis2 20566 . . . . . . . . 9 (((𝐽 ∈ TopBases ∧ (𝐹𝑥) ∈ 𝐽) ∧ ((𝐹𝑦) ∈ 𝐽 ∧ (𝐹𝑧) ∈ ((𝐹𝑥) ∩ (𝐹𝑦)))) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
277, 8, 9, 25, 26syl22anc 1319 . . . . . . . 8 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → ∃𝑤𝐽 ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))
2810adantr 480 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1-onto𝑌)
29 simp2l 1080 . . . . . . . . . . . . . 14 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑥𝑌)
3015, 29syl5ss 3579 . . . . . . . . . . . . 13 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ 𝑌)
3130sselda 3568 . . . . . . . . . . . 12 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧𝑌)
3231adantr 480 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧𝑌)
33 f1ocnvfv2 6433 . . . . . . . . . . 11 ((𝐹:𝑋1-1-onto𝑌𝑧𝑌) → (𝐹‘(𝐹𝑧)) = 𝑧)
3428, 32, 33syl2anc 691 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) = 𝑧)
35 f1ofn 6051 . . . . . . . . . . . 12 (𝐹:𝑋1-1-onto𝑌𝐹 Fn 𝑋)
3628, 35syl 17 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹 Fn 𝑋)
37 simprrr 801 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦)))
38 inss1 3795 . . . . . . . . . . . . 13 ((𝐹𝑥) ∩ (𝐹𝑦)) ⊆ (𝐹𝑥)
3937, 38syl6ss 3580 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹𝑥))
40 cnvimass 5404 . . . . . . . . . . . . 13 (𝐹𝑥) ⊆ dom 𝐹
41 f1odm 6054 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌 → dom 𝐹 = 𝑋)
4228, 41syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → dom 𝐹 = 𝑋)
4340, 42syl5sseq 3616 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑥) ⊆ 𝑋)
4439, 43sstrd 3578 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝑋)
45 simprrl 800 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑧) ∈ 𝑤)
46 fnfvima 6400 . . . . . . . . . . 11 ((𝐹 Fn 𝑋𝑤𝑋 ∧ (𝐹𝑧) ∈ 𝑤) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4736, 44, 45, 46syl3anc 1318 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹‘(𝐹𝑧)) ∈ (𝐹𝑤))
4834, 47eqeltrrd 2689 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ∈ (𝐹𝑤))
49 imassrn 5396 . . . . . . . . . . . 12 (𝐹𝑤) ⊆ ran 𝐹
5028, 1syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋onto𝑌)
51 forn 6031 . . . . . . . . . . . . 13 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
5250, 51syl 17 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ran 𝐹 = 𝑌)
5349, 52syl5sseq 3616 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ 𝑌)
54 f1of1 6049 . . . . . . . . . . . . . 14 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
5528, 54syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐹:𝑋1-1𝑌)
56 f1imacnv 6066 . . . . . . . . . . . . 13 ((𝐹:𝑋1-1𝑌𝑤𝑋) → (𝐹 “ (𝐹𝑤)) = 𝑤)
5755, 44, 56syl2anc 691 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) = 𝑤)
58 simprl 790 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤𝐽)
5957, 58eqeltrd 2688 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝐹𝑤)) ∈ 𝐽)
607adantr 480 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝐽 ∈ TopBases)
612elqtop2 21314 . . . . . . . . . . . 12 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋onto𝑌) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6260, 50, 61syl2anc 691 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑤) ⊆ 𝑌 ∧ (𝐹 “ (𝐹𝑤)) ∈ 𝐽)))
6353, 59, 62mpbir2and 959 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ (𝐽 qTop 𝐹))
64 fnfun 5902 . . . . . . . . . . . . . 14 (𝐹 Fn 𝑋 → Fun 𝐹)
65 inpreima 6250 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6636, 64, 653syl 18 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹 “ (𝑥𝑦)) = ((𝐹𝑥) ∩ (𝐹𝑦)))
6737, 66sseqtr4d 3605 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ (𝐹 “ (𝑥𝑦)))
6836, 64syl 17 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → Fun 𝐹)
6939, 40syl6ss 3580 . . . . . . . . . . . . 13 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑤 ⊆ dom 𝐹)
70 funimass3 6241 . . . . . . . . . . . . 13 ((Fun 𝐹𝑤 ⊆ dom 𝐹) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7168, 69, 70syl2anc 691 . . . . . . . . . . . 12 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → ((𝐹𝑤) ⊆ (𝑥𝑦) ↔ 𝑤 ⊆ (𝐹 “ (𝑥𝑦))))
7267, 71mpbird 246 . . . . . . . . . . 11 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ⊆ (𝑥𝑦))
73 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
7473inex1 4727 . . . . . . . . . . . 12 (𝑥𝑦) ∈ V
7574elpw2 4755 . . . . . . . . . . 11 ((𝐹𝑤) ∈ 𝒫 (𝑥𝑦) ↔ (𝐹𝑤) ⊆ (𝑥𝑦))
7672, 75sylibr 223 . . . . . . . . . 10 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ 𝒫 (𝑥𝑦))
7763, 76elind 3760 . . . . . . . . 9 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
78 elunii 4377 . . . . . . . . 9 ((𝑧 ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
7948, 77, 78syl2anc 691 . . . . . . . 8 (((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) ∧ (𝑤𝐽 ∧ ((𝐹𝑧) ∈ 𝑤𝑤 ⊆ ((𝐹𝑥) ∩ (𝐹𝑦))))) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8027, 79rexlimddv 3017 . . . . . . 7 ((((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) ∧ 𝑧 ∈ (𝑥𝑦)) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8180ex 449 . . . . . 6 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑧 ∈ (𝑥𝑦) → 𝑧 ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8281ssrdv 3574 . . . . 5 (((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
83823expib 1260 . . . 4 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (((𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽) ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
846, 83sylbid 229 . . 3 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ((𝑥 ∈ (𝐽 qTop 𝐹) ∧ 𝑦 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8584ralrimivv 2953 . 2 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
86 ovex 6577 . . 3 (𝐽 qTop 𝐹) ∈ V
87 isbasisg 20562 . . 3 ((𝐽 qTop 𝐹) ∈ V → ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦))))
8886, 87ax-mp 5 . 2 ((𝐽 qTop 𝐹) ∈ TopBases ↔ ∀𝑥 ∈ (𝐽 qTop 𝐹)∀𝑦 ∈ (𝐽 qTop 𝐹)(𝑥𝑦) ⊆ ((𝐽 qTop 𝐹) ∩ 𝒫 (𝑥𝑦)))
8985, 88sylibr 223 1 ((𝐽 ∈ TopBases ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐽 qTop 𝐹) ∈ TopBases)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549   qTop cqtop 15986  TopBasesctb 20520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-qtop 15990  df-bases 20522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator