Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆)) |
2 | | xkoco2cn.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑆 Cn 𝑇)) |
3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇)) |
4 | | cnco 20880 |
. . . 4
⊢ ((𝑔 ∈ (𝑅 Cn 𝑆) ∧ 𝐹 ∈ (𝑆 Cn 𝑇)) → (𝐹 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
5 | 1, 3, 4 | syl2anc 691 |
. . 3
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
6 | | eqid 2610 |
. . 3
⊢ (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) |
7 | 5, 6 | fmptd 6292 |
. 2
⊢ (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇)) |
8 | | eqid 2610 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
9 | | eqid 2610 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} = {𝑦 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑦) ∈ Comp} |
10 | | eqid 2610 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) |
11 | 8, 9, 10 | xkobval 21199 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})} |
12 | 11 | abeq2i 2722 |
. . . 4
⊢ (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
13 | | simpr 476 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔 ∈ (𝑅 Cn 𝑆)) |
14 | 2 | ad3antrrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹 ∈ (𝑆 Cn 𝑇)) |
15 | 13, 14, 4 | syl2anc 691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝐹 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
16 | | imaeq1 5380 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝐹 ∘ 𝑔) → (ℎ “ 𝑘) = ((𝐹 ∘ 𝑔) “ 𝑘)) |
17 | | imaco 5557 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∘ 𝑔) “ 𝑘) = (𝐹 “ (𝑔 “ 𝑘)) |
18 | 16, 17 | syl6eq 2660 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝐹 ∘ 𝑔) → (ℎ “ 𝑘) = (𝐹 “ (𝑔 “ 𝑘))) |
19 | 18 | sseq1d 3595 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐹 ∘ 𝑔) → ((ℎ “ 𝑘) ⊆ 𝑣 ↔ (𝐹 “ (𝑔 “ 𝑘)) ⊆ 𝑣)) |
20 | 19 | elrab3 3332 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑔) ∈ (𝑅 Cn 𝑇) → ((𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔 “ 𝑘)) ⊆ 𝑣)) |
21 | 15, 20 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝐹 “ (𝑔 “ 𝑘)) ⊆ 𝑣)) |
22 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑆 =
∪ 𝑆 |
23 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑇 =
∪ 𝑇 |
24 | 22, 23 | cnf 20860 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝑆 Cn 𝑇) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
25 | 2, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
26 | 25 | ad3antrrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
27 | | ffun 5961 |
. . . . . . . . . . . 12
⊢ (𝐹:∪
𝑆⟶∪ 𝑇
→ Fun 𝐹) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → Fun 𝐹) |
29 | | imassrn 5396 |
. . . . . . . . . . . . 13
⊢ (𝑔 “ 𝑘) ⊆ ran 𝑔 |
30 | 8, 22 | cnf 20860 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝑅 Cn 𝑆) → 𝑔:∪ 𝑅⟶∪ 𝑆) |
31 | 13, 30 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → 𝑔:∪ 𝑅⟶∪ 𝑆) |
32 | | frn 5966 |
. . . . . . . . . . . . . 14
⊢ (𝑔:∪
𝑅⟶∪ 𝑆
→ ran 𝑔 ⊆ ∪ 𝑆) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ran 𝑔 ⊆ ∪ 𝑆) |
34 | 29, 33 | syl5ss 3579 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔 “ 𝑘) ⊆ ∪ 𝑆) |
35 | | fdm 5964 |
. . . . . . . . . . . . 13
⊢ (𝐹:∪
𝑆⟶∪ 𝑇
→ dom 𝐹 = ∪ 𝑆) |
36 | 26, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → dom 𝐹 = ∪ 𝑆) |
37 | 34, 36 | sseqtr4d 3605 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → (𝑔 “ 𝑘) ⊆ dom 𝐹) |
38 | | funimass3 6241 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ (𝑔 “ 𝑘) ⊆ dom 𝐹) → ((𝐹 “ (𝑔 “ 𝑘)) ⊆ 𝑣 ↔ (𝑔 “ 𝑘) ⊆ (◡𝐹 “ 𝑣))) |
39 | 28, 37, 38 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹 “ (𝑔 “ 𝑘)) ⊆ 𝑣 ↔ (𝑔 “ 𝑘) ⊆ (◡𝐹 “ 𝑣))) |
40 | 21, 39 | bitrd 267 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑔 ∈ (𝑅 Cn 𝑆)) → ((𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑔 “ 𝑘) ⊆ (◡𝐹 “ 𝑣))) |
41 | 40 | rabbidva 3163 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔 “ 𝑘) ⊆ (◡𝐹 “ 𝑣)}) |
42 | | xkoco2cn.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Top) |
43 | 42 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑅 ∈ Top) |
44 | | cntop1 20854 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑆 ∈ Top) |
45 | 2, 44 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Top) |
46 | 45 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ Top) |
47 | | simplrl 796 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 ∪ 𝑅) |
48 | 47 | elpwid 4118 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑘 ⊆ ∪ 𝑅) |
49 | | simpr 476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑅 ↾t 𝑘) ∈ Comp) |
50 | 2 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝐹 ∈ (𝑆 Cn 𝑇)) |
51 | | simplrr 797 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ∈ 𝑇) |
52 | | cnima 20879 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (𝑆 Cn 𝑇) ∧ 𝑣 ∈ 𝑇) → (◡𝐹 “ 𝑣) ∈ 𝑆) |
53 | 50, 51, 52 | syl2anc 691 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (◡𝐹 “ 𝑣) ∈ 𝑆) |
54 | 8, 43, 46, 48, 49, 53 | xkoopn 21202 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝑔 “ 𝑘) ⊆ (◡𝐹 “ 𝑣)} ∈ (𝑆 ^ko 𝑅)) |
55 | 41, 54 | eqeltrd 2688 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑆 ^ko 𝑅)) |
56 | | imaeq2 5381 |
. . . . . . . . 9
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) = (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
57 | 6 | mptpreima 5545 |
. . . . . . . . 9
⊢ (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} |
58 | 56, 57 | syl6eq 2660 |
. . . . . . . 8
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) = {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}}) |
59 | 58 | eleq1d 2672 |
. . . . . . 7
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ((◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅) ↔ {𝑔 ∈ (𝑅 Cn 𝑆) ∣ (𝐹 ∘ 𝑔) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ∈ (𝑆 ^ko 𝑅))) |
60 | 55, 59 | syl5ibrcom 236 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))) |
61 | 60 | expimpd 627 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑇)) → (((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))) |
62 | 61 | rexlimdvva 3020 |
. . . 4
⊢ (𝜑 → (∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑇 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))) |
63 | 12, 62 | syl5bi 231 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅))) |
64 | 63 | ralrimiv 2948 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)) |
65 | | eqid 2610 |
. . . . 5
⊢ (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅) |
66 | 65 | xkotopon 21213 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
67 | 42, 45, 66 | syl2anc 691 |
. . 3
⊢ (𝜑 → (𝑆 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
68 | | ovex 6577 |
. . . . . 6
⊢ (𝑅 Cn 𝑇) ∈ V |
69 | 68 | pwex 4774 |
. . . . 5
⊢ 𝒫
(𝑅 Cn 𝑇) ∈ V |
70 | 8, 9, 10 | xkotf 21198 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) |
71 | | frn 5966 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)) |
72 | 70, 71 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇) |
73 | 69, 72 | ssexi 4731 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V |
74 | 73 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V) |
75 | | cntop2 20855 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 Cn 𝑇) → 𝑇 ∈ Top) |
76 | 2, 75 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ Top) |
77 | 8, 9, 10 | xkoval 21200 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
78 | 42, 76, 77 | syl2anc 691 |
. . 3
⊢ (𝜑 → (𝑇 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
79 | | eqid 2610 |
. . . . 5
⊢ (𝑇 ^ko 𝑅) = (𝑇 ^ko 𝑅) |
80 | 79 | xkotopon 21213 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
81 | 42, 76, 80 | syl2anc 691 |
. . 3
⊢ (𝜑 → (𝑇 ^ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
82 | 67, 74, 78, 81 | subbascn 20868 |
. 2
⊢ (𝜑 → ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅)) ↔ ((𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)):(𝑅 Cn 𝑆)⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡(𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) “ 𝑥) ∈ (𝑆 ^ko 𝑅)))) |
83 | 7, 64, 82 | mpbir2and 959 |
1
⊢ (𝜑 → (𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝐹 ∘ 𝑔)) ∈ ((𝑆 ^ko 𝑅) Cn (𝑇 ^ko 𝑅))) |