MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntropn Structured version   Visualization version   GIF version

Theorem ntropn 20663
Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntropn ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)

Proof of Theorem ntropn
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21ntrval 20650 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
3 inss1 3795 . . . 4 (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽
4 uniopn 20527 . . . 4 ((𝐽 ∈ Top ∧ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝐽) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
53, 4mpan2 703 . . 3 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
65adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ 𝐽)
72, 6eqeltrd 2688 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372  cfv 5804  Topctop 20517  intcnt 20631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-top 20521  df-ntr 20634
This theorem is referenced by:  ntrval2  20665  ntrss3  20674  ntrin  20675  cmclsopn  20676  cmntrcld  20677  isopn3  20680  ntridm  20682  neiint  20718  topssnei  20738  maxlp  20761  restntr  20796  iscnp4  20877  cnntri  20885  cnprest  20903  llycmpkgen2  21163  xkococnlem  21272  flimopn  21589  fclsneii  21631  fcfnei  21649  subgntr  21720  iccntr  22432  rectbntr0  22443  bcthlem5  22933  bcth3  22936  limcflf  23451  perfdvf  23473  ubthlem1  27110  cvmlift2lem12  30550  opnregcld  31495  ntrrn  37440
  Copyright terms: Public domain W3C validator