Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrss2 | Structured version Visualization version GIF version |
Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | ntrval 20650 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
3 | inss2 3796 | . . . 4 ⊢ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝒫 𝑆 | |
4 | 3 | unissi 4397 | . . 3 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ ∪ 𝒫 𝑆 |
5 | unipw 4845 | . . 3 ⊢ ∪ 𝒫 𝑆 = 𝑆 | |
6 | 4, 5 | sseqtri 3600 | . 2 ⊢ ∪ (𝐽 ∩ 𝒫 𝑆) ⊆ 𝑆 |
7 | 2, 6 | syl6eqss 3618 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ⊆ wss 3540 𝒫 cpw 4108 ∪ cuni 4372 ‘cfv 5804 Topctop 20517 intcnt 20631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-top 20521 df-ntr 20634 |
This theorem is referenced by: ntrin 20675 neiint 20718 opnnei 20734 topssnei 20738 maxlp 20761 restntr 20796 iscnp4 20877 cnntri 20885 cnntr 20889 cnprest 20903 llycmpkgen2 21163 xkococnlem 21272 flimopn 21589 fclsneii 21631 fcfnei 21649 subgntr 21720 iccntr 22432 rectbntr0 22443 bcthlem5 22933 limcflf 23451 dvbss 23471 perfdvf 23473 dvreslem 23479 dvcnp2 23489 dvnres 23500 dvaddbr 23507 dvcmulf 23514 dvmptres2 23531 dvmptcmul 23533 dvmptntr 23540 dvcnvre 23586 taylthlem1 23931 taylthlem2 23932 ulmdvlem3 23960 lgamucov2 24565 ubthlem1 27110 kur14lem6 30447 cvmlift2lem12 30550 opnbnd 31490 opnregcld 31495 cldregopn 31496 dvresntr 38806 |
Copyright terms: Public domain | W3C validator |