MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoopn Structured version   Visualization version   GIF version

Theorem xkoopn 21202
Description: A basic open set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoopn.x 𝑋 = 𝑅
xkoopn.r (𝜑𝑅 ∈ Top)
xkoopn.s (𝜑𝑆 ∈ Top)
xkoopn.a (𝜑𝐴𝑋)
xkoopn.c (𝜑 → (𝑅t 𝐴) ∈ Comp)
xkoopn.u (𝜑𝑈𝑆)
Assertion
Ref Expression
xkoopn (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆 ^ko 𝑅))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝑋(𝑓)

Proof of Theorem xkoopn
Dummy variables 𝑘 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . . . . 7 (𝑅 Cn 𝑆) ∈ V
21pwex 4774 . . . . . 6 𝒫 (𝑅 Cn 𝑆) ∈ V
3 xkoopn.x . . . . . . . 8 𝑋 = 𝑅
4 eqid 2610 . . . . . . . 8 {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
5 eqid 2610 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
63, 4, 5xkotf 21198 . . . . . . 7 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
7 frn 5966 . . . . . . 7 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
86, 7ax-mp 5 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
92, 8ssexi 4731 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
10 ssfii 8208 . . . . 5 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
119, 10ax-mp 5 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
12 fvex 6113 . . . . 5 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
13 bastg 20581 . . . . 5 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
1412, 13ax-mp 5 . . . 4 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
1511, 14sstri 3577 . . 3 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
16 xkoopn.a . . . . . . 7 (𝜑𝐴𝑋)
17 xkoopn.r . . . . . . . 8 (𝜑𝑅 ∈ Top)
183topopn 20536 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
19 elpw2g 4754 . . . . . . . 8 (𝑋𝑅 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2017, 18, 193syl 18 . . . . . . 7 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
2116, 20mpbird 246 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝑋)
22 xkoopn.c . . . . . 6 (𝜑 → (𝑅t 𝐴) ∈ Comp)
23 oveq2 6557 . . . . . . . 8 (𝑥 = 𝐴 → (𝑅t 𝑥) = (𝑅t 𝐴))
2423eleq1d 2672 . . . . . . 7 (𝑥 = 𝐴 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝐴) ∈ Comp))
2524elrab 3331 . . . . . 6 (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ (𝑅t 𝐴) ∈ Comp))
2621, 22, 25sylanbrc 695 . . . . 5 (𝜑𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp})
27 xkoopn.u . . . . 5 (𝜑𝑈𝑆)
28 eqidd 2611 . . . . 5 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
29 imaeq2 5381 . . . . . . . . 9 (𝑘 = 𝐴 → (𝑓𝑘) = (𝑓𝐴))
3029sseq1d 3595 . . . . . . . 8 (𝑘 = 𝐴 → ((𝑓𝑘) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑣))
3130rabbidv 3164 . . . . . . 7 (𝑘 = 𝐴 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣})
3231eqeq2d 2620 . . . . . 6 (𝑘 = 𝐴 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣}))
33 sseq2 3590 . . . . . . . 8 (𝑣 = 𝑈 → ((𝑓𝐴) ⊆ 𝑣 ↔ (𝑓𝐴) ⊆ 𝑈))
3433rabbidv 3164 . . . . . . 7 (𝑣 = 𝑈 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈})
3534eqeq2d 2620 . . . . . 6 (𝑣 = 𝑈 → ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}))
3632, 35rspc2ev 3295 . . . . 5 ((𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp} ∧ 𝑈𝑆 ∧ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈}) → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
3726, 27, 28, 36syl3anc 1318 . . . 4 (𝜑 → ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
381rabex 4740 . . . . 5 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ V
39 eqeq1 2614 . . . . . 6 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
40392rexbidv 3039 . . . . 5 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} → (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
415rnmpt2 6668 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
4238, 40, 41elab2 3323 . . . 4 ({𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
4337, 42sylibr 223 . . 3 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4415, 43sseldi 3566 . 2 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
45 xkoopn.s . . 3 (𝜑𝑆 ∈ Top)
463, 4, 5xkoval 21200 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4717, 45, 46syl2anc 691 . 2 (𝜑 → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
4844, 47eleqtrrd 2691 1 (𝜑 → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝐴) ⊆ 𝑈} ∈ (𝑆 ^ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372   × cxp 5036  ran crn 5039  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  ficfi 8199  t crest 15904  topGenctg 15921  Topctop 20517   Cn ccn 20838  Compccmp 20999   ^ko cxko 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-1o 7447  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-top 20521  df-xko 21176
This theorem is referenced by:  xkouni  21212  xkohaus  21266  xkoptsub  21267  xkoco1cn  21270  xkoco2cn  21271  xkococnlem  21272
  Copyright terms: Public domain W3C validator