Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7011
 Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7010 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 704 1 (𝐴𝐵) ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 1977  Vcvv 3173   ∘ ccom 5042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049 This theorem is referenced by:  domtr  7895  enfixsn  7954  wdomtr  8363  cfcoflem  8977  axcc3  9143  axdc4uzlem  12644  hashfacen  13095  cofu1st  16366  cofu2nd  16368  cofucl  16371  fucid  16454  symgplusg  17632  gsumzaddlem  18144  evls1fval  19505  evls1val  19506  evl1fval  19513  evl1val  19514  znle  19703  xkococnlem  21272  xkococn  21273  symgtgp  21715  pserulm  23980  imsval  26924  eulerpartgbij  29761  derangenlem  30407  subfacp1lem5  30420  poimirlem9  32588  poimirlem15  32594  poimirlem17  32596  poimirlem20  32599  mbfresfi  32626  tendopl2  35083  erngplus2  35110  erngplus2-rN  35118  dvaplusgv  35316  dvhvaddass  35404  dvhlveclem  35415  diblss  35477  diblsmopel  35478  dicvaddcl  35497  dicvscacl  35498  cdlemn7  35510  dihordlem7  35521  dihopelvalcpre  35555  xihopellsmN  35561  dihopellsm  35562  rabren3dioph  36397  fzisoeu  38455  stirlinglem14  38980
 Copyright terms: Public domain W3C validator