Step | Hyp | Ref
| Expression |
1 | | elfvdm 6130 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑋 ∈ dom ∞Met) |
3 | | simpr 476 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ⊆ 𝑋) |
4 | 2, 3 | ssexd 4733 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝑅 ∈ V) |
5 | | xmetf 21944 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
6 | 5 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
7 | | xpss12 5148 |
. . . 4
⊢ ((𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
8 | 3, 7 | sylancom 698 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝑅 × 𝑅) ⊆ (𝑋 × 𝑋)) |
9 | 6, 8 | fssresd 5984 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)):(𝑅 × 𝑅)⟶ℝ*) |
10 | | ovres 6698 |
. . . . 5
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
11 | 10 | adantl 481 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
12 | 11 | eqeq1d 2612 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ (𝑥𝐷𝑦) = 0)) |
13 | | simpll 786 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
14 | | simplr 788 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
15 | | simprl 790 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
16 | 14, 15 | sseldd 3569 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
17 | | simprr 792 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
18 | 14, 17 | sseldd 3569 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
19 | | xmeteq0 21953 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
20 | 13, 16, 18, 19 | syl3anc 1318 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
21 | 12, 20 | bitrd 267 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = 0 ↔ 𝑥 = 𝑦)) |
22 | | simpll 786 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝐷 ∈ (∞Met‘𝑋)) |
23 | | simplr 788 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑅 ⊆ 𝑋) |
24 | | simpr3 1062 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑅) |
25 | 23, 24 | sseldd 3569 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑧 ∈ 𝑋) |
26 | 16 | 3adantr3 1215 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑋) |
27 | 18 | 3adantr3 1215 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑋) |
28 | | xmettri2 21955 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
29 | 22, 25, 26, 27, 28 | syl13anc 1320 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
30 | 11 | 3adantr3 1215 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑥𝐷𝑦)) |
31 | | simpr1 1060 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑥 ∈ 𝑅) |
32 | 24, 31 | ovresd 6699 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) = (𝑧𝐷𝑥)) |
33 | | simpr2 1061 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → 𝑦 ∈ 𝑅) |
34 | 24, 33 | ovresd 6699 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦) = (𝑧𝐷𝑦)) |
35 | 32, 34 | oveq12d 6567 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦)) = ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
36 | 29, 30, 35 | 3brtr4d 4615 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅)) → (𝑥(𝐷 ↾ (𝑅 × 𝑅))𝑦) ≤ ((𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑥) +𝑒 (𝑧(𝐷 ↾ (𝑅 × 𝑅))𝑦))) |
37 | 4, 9, 21, 36 | isxmetd 21941 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) |