MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Unicode version

Theorem cxpcn3 22073
Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d  |-  D  =  ( `' Re " RR+ )
cxpcn3.j  |-  J  =  ( TopOpen ` fld )
cxpcn3.k  |-  K  =  ( Jt  ( 0 [,) +oo ) )
cxpcn3.l  |-  L  =  ( Jt  D )
Assertion
Ref Expression
cxpcn3  |-  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( K 
tX  L )  Cn  J )
Distinct variable groups:    x, y, J    x, D, y
Allowed substitution hints:    K( x, y)    L( x, y)

Proof of Theorem cxpcn3
Dummy variables  a 
b  d  e  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0re 9376 . . . . . . . 8  |-  0  e.  RR
2 pnfxr 11082 . . . . . . . 8  |- +oo  e.  RR*
3 icossre 11366 . . . . . . . 8  |-  ( ( 0  e.  RR  /\ +oo  e.  RR* )  ->  (
0 [,) +oo )  C_  RR )
41, 2, 3mp2an 667 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
5 ax-resscn 9329 . . . . . . 7  |-  RR  C_  CC
64, 5sstri 3355 . . . . . 6  |-  ( 0 [,) +oo )  C_  CC
76sseli 3342 . . . . 5  |-  ( x  e.  ( 0 [,) +oo )  ->  x  e.  CC )
8 cxpcn3.d . . . . . . 7  |-  D  =  ( `' Re " RR+ )
9 cnvimass 5179 . . . . . . . 8  |-  ( `' Re " RR+ )  C_ 
dom  Re
10 ref 12587 . . . . . . . . 9  |-  Re : CC
--> RR
1110fdmi 5554 . . . . . . . 8  |-  dom  Re  =  CC
129, 11sseqtri 3378 . . . . . . 7  |-  ( `' Re " RR+ )  C_  CC
138, 12eqsstri 3376 . . . . . 6  |-  D  C_  CC
1413sseli 3342 . . . . 5  |-  ( y  e.  D  ->  y  e.  CC )
15 cxpcl 22006 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  ^c 
y )  e.  CC )
167, 14, 15syl2an 474 . . . 4  |-  ( ( x  e.  ( 0 [,) +oo )  /\  y  e.  D )  ->  ( x  ^c 
y )  e.  CC )
1716rgen2 2804 . . 3  |-  A. x  e.  ( 0 [,) +oo ) A. y  e.  D  ( x  ^c 
y )  e.  CC
18 eqid 2435 . . . 4  |-  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  =  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )
1918fmpt2 6632 . . 3  |-  ( A. x  e.  ( 0 [,) +oo ) A. y  e.  D  (
x  ^c  y )  e.  CC  <->  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC )
2017, 19mpbi 208 . 2  |-  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC
21 cxpcn3.j . . . . . . . . . . . . 13  |-  J  =  ( TopOpen ` fld )
2221cnfldtopon 20206 . . . . . . . . . . . 12  |-  J  e.  (TopOn `  CC )
23 rpre 10987 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
24 rpge0 10993 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  0  <_  x )
25 elrege0 11382 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,) +oo )  <->  ( x  e.  RR  /\  0  <_  x ) )
2623, 24, 25sylanbrc 659 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e.  ( 0 [,) +oo ) )
2726ssriv 3350 . . . . . . . . . . . . 13  |-  RR+  C_  (
0 [,) +oo )
2827, 6sstri 3355 . . . . . . . . . . . 12  |-  RR+  C_  CC
29 resttopon 18609 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  CC )  /\  RR+  C_  CC )  ->  ( Jt  RR+ )  e.  (TopOn `  RR+ ) )
3022, 28, 29mp2an 667 . . . . . . . . . . 11  |-  ( Jt  RR+ )  e.  (TopOn `  RR+ )
3130toponunii 18381 . . . . . . . . . . . 12  |-  RR+  =  U. ( Jt  RR+ )
3231restid 14357 . . . . . . . . . . 11  |-  ( ( Jt 
RR+ )  e.  (TopOn `  RR+ )  ->  (
( Jt  RR+ )t  RR+ )  =  ( Jt 
RR+ ) )
3330, 32ax-mp 5 . . . . . . . . . 10  |-  ( ( Jt 
RR+ )t  RR+ )  =  ( Jt 
RR+ )
3433eqcomi 2439 . . . . . . . . 9  |-  ( Jt  RR+ )  =  ( ( Jt  RR+ )t 
RR+ )
3530a1i 11 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( Jt  RR+ )  e.  (TopOn `  RR+ ) )
36 ssid 3365 . . . . . . . . . 10  |-  RR+  C_  RR+
3736a1i 11 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  RR+  C_  RR+ )
38 cxpcn3.l . . . . . . . . 9  |-  L  =  ( Jt  D )
3922a1i 11 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  J  e.  (TopOn `  CC ) )
4013a1i 11 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  D  C_  CC )
41 eqid 2435 . . . . . . . . . . 11  |-  ( Jt  RR+ )  =  ( Jt  RR+ )
4221, 41cxpcn2 22071 . . . . . . . . . 10  |-  ( x  e.  RR+ ,  y  e.  CC  |->  ( x  ^c  y ) )  e.  ( ( ( Jt 
RR+ )  tX  J
)  Cn  J )
4342a1i 11 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( x  e.  RR+ ,  y  e.  CC  |->  ( x  ^c  y ) )  e.  ( ( ( Jt 
RR+ )  tX  J
)  Cn  J ) )
4434, 35, 37, 38, 39, 40, 43cnmpt2res 19094 . . . . . . . 8  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( Jt 
RR+ )  tX  L
)  Cn  J ) )
45 elrege0 11382 . . . . . . . . . . . . 13  |-  ( u  e.  ( 0 [,) +oo )  <->  ( u  e.  RR  /\  0  <_  u ) )
4645simplbi 457 . . . . . . . . . . . 12  |-  ( u  e.  ( 0 [,) +oo )  ->  u  e.  RR )
4746adantr 462 . . . . . . . . . . 11  |-  ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  u  e.  RR )
4847adantr 462 . . . . . . . . . 10  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  u  e.  RR )
49 simpr 458 . . . . . . . . . 10  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  0  <  u )
5048, 49elrpd 11015 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  u  e.  RR+ )
51 simplr 749 . . . . . . . . 9  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  v  e.  D )
52 opelxp 4858 . . . . . . . . 9  |-  ( <.
u ,  v >.  e.  ( RR+  X.  D
)  <->  ( u  e.  RR+  /\  v  e.  D
) )
5350, 51, 52sylanbrc 659 . . . . . . . 8  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  <. u ,  v >.  e.  ( RR+  X.  D ) )
54 resttopon 18609 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  CC )  /\  D  C_  CC )  ->  ( Jt  D )  e.  (TopOn `  D ) )
5522, 13, 54mp2an 667 . . . . . . . . . . . 12  |-  ( Jt  D )  e.  (TopOn `  D )
5638, 55eqeltri 2505 . . . . . . . . . . 11  |-  L  e.  (TopOn `  D )
57 txtopon 19008 . . . . . . . . . . 11  |-  ( ( ( Jt  RR+ )  e.  (TopOn `  RR+ )  /\  L  e.  (TopOn `  D )
)  ->  ( ( Jt  RR+ )  tX  L )  e.  (TopOn `  ( RR+  X.  D ) ) )
5830, 56, 57mp2an 667 . . . . . . . . . 10  |-  ( ( Jt 
RR+ )  tX  L
)  e.  (TopOn `  ( RR+  X.  D ) )
5958toponunii 18381 . . . . . . . . 9  |-  ( RR+  X.  D )  =  U. ( ( Jt  RR+ )  tX  L )
6059cncnpi 18726 . . . . . . . 8  |-  ( ( ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( Jt  RR+ )  tX  L )  Cn  J
)  /\  <. u ,  v >.  e.  ( RR+  X.  D ) )  ->  ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c 
y ) )  e.  ( ( ( ( Jt 
RR+ )  tX  L
)  CnP  J ) `  <. u ,  v
>. ) )
6144, 53, 60syl2anc 656 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( ( Jt  RR+ )  tX  L
)  CnP  J ) `  <. u ,  v
>. ) )
62 ssid 3365 . . . . . . . 8  |-  D  C_  D
63 resmpt2 6179 . . . . . . . 8  |-  ( (
RR+  C_  ( 0 [,) +oo )  /\  D  C_  D )  ->  (
( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c 
y ) )  |`  ( RR+  X.  D ) )  =  ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c  y ) ) )
6427, 62, 63mp2an 667 . . . . . . 7  |-  ( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  |`  ( RR+  X.  D ) )  =  ( x  e.  RR+ ,  y  e.  D  |->  ( x  ^c 
y ) )
65 cxpcn3.k . . . . . . . . . . . 12  |-  K  =  ( Jt  ( 0 [,) +oo ) )
66 resttopon 18609 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  CC )  /\  (
0 [,) +oo )  C_  CC )  ->  ( Jt  ( 0 [,) +oo ) )  e.  (TopOn `  ( 0 [,) +oo ) ) )
6722, 6, 66mp2an 667 . . . . . . . . . . . 12  |-  ( Jt  ( 0 [,) +oo )
)  e.  (TopOn `  ( 0 [,) +oo ) )
6865, 67eqeltri 2505 . . . . . . . . . . 11  |-  K  e.  (TopOn `  ( 0 [,) +oo ) )
69 ioorp 11363 . . . . . . . . . . . . . 14  |-  ( 0 (,) +oo )  = 
RR+
70 iooretop 20189 . . . . . . . . . . . . . 14  |-  ( 0 (,) +oo )  e.  ( topGen `  ran  (,) )
7169, 70eqeltrri 2506 . . . . . . . . . . . . 13  |-  RR+  e.  ( topGen `  ran  (,) )
72 retop 20184 . . . . . . . . . . . . . . 15  |-  ( topGen ` 
ran  (,) )  e.  Top
73 ovex 6107 . . . . . . . . . . . . . . 15  |-  ( 0 [,) +oo )  e. 
_V
74 restopnb 18623 . . . . . . . . . . . . . . 15  |-  ( ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( 0 [,) +oo )  e.  _V )  /\  ( RR+  e.  ( topGen `
 ran  (,) )  /\  RR+  C_  ( 0 [,) +oo )  /\  RR+  C_  RR+ ) )  -> 
( RR+  e.  ( topGen `
 ran  (,) )  <->  RR+ 
e.  ( ( topGen ` 
ran  (,) )t  ( 0 [,) +oo ) ) ) )
7572, 73, 74mpanl12 677 . . . . . . . . . . . . . 14  |-  ( (
RR+  e.  ( topGen ` 
ran  (,) )  /\  RR+  C_  (
0 [,) +oo )  /\  RR+  C_  RR+ )  -> 
( RR+  e.  ( topGen `
 ran  (,) )  <->  RR+ 
e.  ( ( topGen ` 
ran  (,) )t  ( 0 [,) +oo ) ) ) )
7671, 27, 36, 75mp3an 1309 . . . . . . . . . . . . 13  |-  ( RR+  e.  ( topGen `  ran  (,) )  <->  RR+ 
e.  ( ( topGen ` 
ran  (,) )t  ( 0 [,) +oo ) ) )
7771, 76mpbi 208 . . . . . . . . . . . 12  |-  RR+  e.  ( ( topGen `  ran  (,) )t  ( 0 [,) +oo ) )
78 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
7921, 78rerest 20225 . . . . . . . . . . . . . 14  |-  ( ( 0 [,) +oo )  C_  RR  ->  ( Jt  (
0 [,) +oo )
)  =  ( (
topGen `  ran  (,) )t  (
0 [,) +oo )
) )
804, 79ax-mp 5 . . . . . . . . . . . . 13  |-  ( Jt  ( 0 [,) +oo )
)  =  ( (
topGen `  ran  (,) )t  (
0 [,) +oo )
)
8165, 80eqtri 2455 . . . . . . . . . . . 12  |-  K  =  ( ( topGen `  ran  (,) )t  ( 0 [,) +oo ) )
8277, 81eleqtrri 2508 . . . . . . . . . . 11  |-  RR+  e.  K
83 toponmax 18377 . . . . . . . . . . . 12  |-  ( L  e.  (TopOn `  D
)  ->  D  e.  L )
8456, 83ax-mp 5 . . . . . . . . . . 11  |-  D  e.  L
85 txrest 19048 . . . . . . . . . . 11  |-  ( ( ( K  e.  (TopOn `  ( 0 [,) +oo ) )  /\  L  e.  (TopOn `  D )
)  /\  ( RR+  e.  K  /\  D  e.  L ) )  -> 
( ( K  tX  L )t  ( RR+  X.  D
) )  =  ( ( Kt  RR+ )  tX  ( Lt  D ) ) )
8668, 56, 82, 84, 85mp4an 668 . . . . . . . . . 10  |-  ( ( K  tX  L )t  (
RR+  X.  D )
)  =  ( ( Kt 
RR+ )  tX  ( Lt  D ) )
8765oveq1i 6092 . . . . . . . . . . . 12  |-  ( Kt  RR+ )  =  ( ( Jt  ( 0 [,) +oo ) )t  RR+ )
88 restabs 18613 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  CC )  /\  RR+  C_  (
0 [,) +oo )  /\  ( 0 [,) +oo )  e.  _V )  ->  ( ( Jt  ( 0 [,) +oo ) )t  RR+ )  =  ( Jt  RR+ )
)
8922, 27, 73, 88mp3an 1309 . . . . . . . . . . . 12  |-  ( ( Jt  ( 0 [,) +oo ) )t  RR+ )  =  ( Jt 
RR+ )
9087, 89eqtri 2455 . . . . . . . . . . 11  |-  ( Kt  RR+ )  =  ( Jt  RR+ )
9156toponunii 18381 . . . . . . . . . . . . 13  |-  D  = 
U. L
9291restid 14357 . . . . . . . . . . . 12  |-  ( L  e.  (TopOn `  D
)  ->  ( Lt  D
)  =  L )
9356, 92ax-mp 5 . . . . . . . . . . 11  |-  ( Lt  D )  =  L
9490, 93oveq12i 6094 . . . . . . . . . 10  |-  ( ( Kt 
RR+ )  tX  ( Lt  D ) )  =  ( ( Jt  RR+ )  tX  L )
9586, 94eqtri 2455 . . . . . . . . 9  |-  ( ( K  tX  L )t  (
RR+  X.  D )
)  =  ( ( Jt 
RR+ )  tX  L
)
9695oveq1i 6092 . . . . . . . 8  |-  ( ( ( K  tX  L
)t  ( RR+  X.  D
) )  CnP  J
)  =  ( ( ( Jt  RR+ )  tX  L
)  CnP  J )
9796fveq1i 5682 . . . . . . 7  |-  ( ( ( ( K  tX  L )t  ( RR+  X.  D
) )  CnP  J
) `  <. u ,  v >. )  =  ( ( ( ( Jt  RR+ )  tX  L )  CnP 
J ) `  <. u ,  v >. )
9861, 64, 973eltr4g 2518 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  |`  ( RR+  X.  D ) )  e.  ( ( ( ( K  tX  L
)t  ( RR+  X.  D
) )  CnP  J
) `  <. u ,  v >. ) )
99 txtopon 19008 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  ( 0 [,) +oo ) )  /\  L  e.  (TopOn `  D )
)  ->  ( K  tX  L )  e.  (TopOn `  ( ( 0 [,) +oo )  X.  D
) ) )
10068, 56, 99mp2an 667 . . . . . . . . 9  |-  ( K 
tX  L )  e.  (TopOn `  ( (
0 [,) +oo )  X.  D ) )
101100topontopi 18380 . . . . . . . 8  |-  ( K 
tX  L )  e. 
Top
102101a1i 11 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( K  tX  L )  e.  Top )
103 xpss1 4937 . . . . . . . 8  |-  ( RR+  C_  ( 0 [,) +oo )  ->  ( RR+  X.  D
)  C_  ( (
0 [,) +oo )  X.  D ) )
10427, 103mp1i 12 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( RR+  X.  D )  C_  (
( 0 [,) +oo )  X.  D ) )
105 txopn 19019 . . . . . . . . . 10  |-  ( ( ( K  e.  (TopOn `  ( 0 [,) +oo ) )  /\  L  e.  (TopOn `  D )
)  /\  ( RR+  e.  K  /\  D  e.  L ) )  -> 
( RR+  X.  D
)  e.  ( K 
tX  L ) )
10668, 56, 82, 84, 105mp4an 668 . . . . . . . . 9  |-  ( RR+  X.  D )  e.  ( K  tX  L )
107 isopn3i 18530 . . . . . . . . 9  |-  ( ( ( K  tX  L
)  e.  Top  /\  ( RR+  X.  D )  e.  ( K  tX  L ) )  -> 
( ( int `  ( K  tX  L ) ) `
 ( RR+  X.  D
) )  =  (
RR+  X.  D )
)
108101, 106, 107mp2an 667 . . . . . . . 8  |-  ( ( int `  ( K 
tX  L ) ) `
 ( RR+  X.  D
) )  =  (
RR+  X.  D )
10953, 108syl6eleqr 2526 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  <. u ,  v >.  e.  (
( int `  ( K  tX  L ) ) `
 ( RR+  X.  D
) ) )
11020a1i 11 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC )
11168topontopi 18380 . . . . . . . . 9  |-  K  e. 
Top
11256topontopi 18380 . . . . . . . . 9  |-  L  e. 
Top
11368toponunii 18381 . . . . . . . . 9  |-  ( 0 [,) +oo )  = 
U. K
114111, 112, 113, 91txunii 19010 . . . . . . . 8  |-  ( ( 0 [,) +oo )  X.  D )  =  U. ( K  tX  L )
11522toponunii 18381 . . . . . . . 8  |-  CC  =  U. J
116114, 115cnprest 18737 . . . . . . 7  |-  ( ( ( ( K  tX  L )  e.  Top  /\  ( RR+  X.  D
)  C_  ( (
0 [,) +oo )  X.  D ) )  /\  ( <. u ,  v
>.  e.  ( ( int `  ( K  tX  L
) ) `  ( RR+  X.  D ) )  /\  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC ) )  ->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. u ,  v >. )  <->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  |`  ( RR+  X.  D ) )  e.  ( ( ( ( K  tX  L
)t  ( RR+  X.  D
) )  CnP  J
) `  <. u ,  v >. ) ) )
117102, 104, 109, 110, 116syl22anc 1214 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. u ,  v >. )  <->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  |`  ( RR+  X.  D ) )  e.  ( ( ( ( K  tX  L
)t  ( RR+  X.  D
) )  CnP  J
) `  <. u ,  v >. ) ) )
11898, 117mpbird 232 . . . . 5  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  <  u )  ->  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  <. u ,  v >.
) )
11920a1i 11 . . . . . . . 8  |-  ( v  e.  D  ->  (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC )
120 eqid 2435 . . . . . . . . . . 11  |-  ( if ( ( Re `  v )  <_  1 ,  ( Re `  v ) ,  1 )  /  2 )  =  ( if ( ( Re `  v
)  <_  1 , 
( Re `  v
) ,  1 )  /  2 )
121 eqid 2435 . . . . . . . . . . 11  |-  if ( ( if ( ( Re `  v )  <_  1 ,  ( Re `  v ) ,  1 )  / 
2 )  <_  (
e  ^c  ( 1  /  ( if ( ( Re `  v )  <_  1 ,  ( Re `  v ) ,  1 )  /  2 ) ) ) ,  ( if ( ( Re
`  v )  <_ 
1 ,  ( Re
`  v ) ,  1 )  /  2
) ,  ( e  ^c  ( 1  /  ( if ( ( Re `  v
)  <_  1 , 
( Re `  v
) ,  1 )  /  2 ) ) ) )  =  if ( ( if ( ( Re `  v
)  <_  1 , 
( Re `  v
) ,  1 )  /  2 )  <_ 
( e  ^c 
( 1  /  ( if ( ( Re `  v )  <_  1 ,  ( Re `  v ) ,  1 )  /  2 ) ) ) ,  ( if ( ( Re
`  v )  <_ 
1 ,  ( Re
`  v ) ,  1 )  /  2
) ,  ( e  ^c  ( 1  /  ( if ( ( Re `  v
)  <_  1 , 
( Re `  v
) ,  1 )  /  2 ) ) ) )
1228, 21, 65, 38, 120, 121cxpcn3lem 22072 . . . . . . . . . 10  |-  ( ( v  e.  D  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) )
123122ralrimiva 2791 . . . . . . . . 9  |-  ( v  e.  D  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) )
124 0e0icopnf 11384 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ( 0 [,) +oo )
125124a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  0  e.  ( 0 [,) +oo ) )
126 simprl 750 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  a  e.  ( 0 [,) +oo ) )
127125, 126ovresd 6222 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( ( abs 
o.  -  )  |`  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  =  ( 0 ( abs  o.  -  ) a ) )
128 0cn 9368 . . . . . . . . . . . . . . . . 17  |-  0  e.  CC
1296, 126sseldi 3344 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  a  e.  CC )
130 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
131130cnmetdval 20194 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  CC  /\  a  e.  CC )  ->  ( 0 ( abs 
o.  -  ) a
)  =  ( abs `  ( 0  -  a
) ) )
132128, 129, 131sylancr 658 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( abs  o.  -  ) a )  =  ( abs `  (
0  -  a ) ) )
133 df-neg 9588 . . . . . . . . . . . . . . . . . 18  |-  -u a  =  ( 0  -  a )
134133fveq2i 5684 . . . . . . . . . . . . . . . . 17  |-  ( abs `  -u a )  =  ( abs `  (
0  -  a ) )
135129absnegd 12921 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  ( abs `  -u a )  =  ( abs `  a
) )
136134, 135syl5eqr 2481 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  ( abs `  ( 0  -  a ) )  =  ( abs `  a
) )
137127, 132, 1363eqtrd 2471 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( ( abs 
o.  -  )  |`  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  =  ( abs `  a ) )
138137breq1d 4292 . . . . . . . . . . . . . 14  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) a )  <  d  <->  ( abs `  a )  <  d
) )
139 simpl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  v  e.  D )
140 simprr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  b  e.  D )
141139, 140ovresd 6222 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
v ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) b )  =  ( v ( abs  o.  -  ) b ) )
14213, 139sseldi 3344 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  v  e.  CC )
14313, 140sseldi 3344 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  b  e.  CC )
144130cnmetdval 20194 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  CC  /\  b  e.  CC )  ->  ( v ( abs 
o.  -  ) b
)  =  ( abs `  ( v  -  b
) ) )
145142, 143, 144syl2anc 656 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
v ( abs  o.  -  ) b )  =  ( abs `  (
v  -  b ) ) )
146141, 145eqtrd 2467 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
v ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) b )  =  ( abs `  ( v  -  b ) ) )
147146breq1d 4292 . . . . . . . . . . . . . 14  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d  <->  ( abs `  ( v  -  b
) )  <  d
) )
148138, 147anbi12d 705 . . . . . . . . . . . . 13  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  <->  ( ( abs `  a )  < 
d  /\  ( abs `  ( v  -  b
) )  <  d
) ) )
149 oveq12 6091 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  0  /\  y  =  v )  ->  ( x  ^c  y )  =  ( 0  ^c 
v ) )
150 ovex 6107 . . . . . . . . . . . . . . . . . . 19  |-  ( 0  ^c  v )  e.  _V
151149, 18, 150ovmpt2a 6212 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v )  =  ( 0  ^c  v ) )
152124, 139, 151sylancr 658 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v )  =  ( 0  ^c  v ) )
1538eleq2i 2499 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  D  <->  v  e.  ( `' Re " RR+ )
)
154 ffn 5549 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Re : CC --> RR  ->  Re  Fn  CC )
155 elpreima 5813 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Re  Fn  CC  ->  (
v  e.  ( `' Re " RR+ )  <->  ( v  e.  CC  /\  ( Re `  v )  e.  RR+ ) ) )
15610, 154, 155mp2b 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  ( `' Re "
RR+ )  <->  ( v  e.  CC  /\  ( Re
`  v )  e.  RR+ ) )
157153, 156bitri 249 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  e.  D  <->  ( v  e.  CC  /\  ( Re
`  v )  e.  RR+ ) )
158157simplbi 457 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  D  ->  v  e.  CC )
159157simprbi 461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  D  ->  (
Re `  v )  e.  RR+ )
160159rpne0d 11022 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  e.  D  ->  (
Re `  v )  =/=  0 )
161 fveq2 5681 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  0  ->  (
Re `  v )  =  ( Re ` 
0 ) )
162 re0 12627 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Re
`  0 )  =  0
163161, 162syl6eq 2483 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  0  ->  (
Re `  v )  =  0 )
164163necon3i 2642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Re `  v )  =/=  0  ->  v  =/=  0 )
165160, 164syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  D  ->  v  =/=  0 )
166158, 1650cxpd 22042 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  D  ->  (
0  ^c  v )  =  0 )
167166adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0  ^c  v )  =  0 )
168152, 167eqtrd 2467 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v )  =  0 )
169 oveq12 6091 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  a  /\  y  =  b )  ->  ( x  ^c 
y )  =  ( a  ^c  b ) )
170 ovex 6107 . . . . . . . . . . . . . . . . . 18  |-  ( a  ^c  b )  e.  _V
171169, 18, 170ovmpt2a 6212 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  ( 0 [,) +oo )  /\  b  e.  D )  ->  ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b )  =  ( a  ^c  b ) )
172171adantl 463 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b )  =  ( a  ^c  b ) )
173168, 172oveq12d 6100 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs 
o.  -  ) (
a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  =  ( 0 ( abs 
o.  -  ) (
a  ^c  b ) ) )
174129, 143cxpcld 22040 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
a  ^c  b )  e.  CC )
175130cnmetdval 20194 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  CC  /\  ( a  ^c 
b )  e.  CC )  ->  ( 0 ( abs  o.  -  )
( a  ^c 
b ) )  =  ( abs `  (
0  -  ( a  ^c  b ) ) ) )
176128, 174, 175sylancr 658 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
0 ( abs  o.  -  ) ( a  ^c  b ) )  =  ( abs `  ( 0  -  (
a  ^c  b ) ) ) )
177 df-neg 9588 . . . . . . . . . . . . . . . . 17  |-  -u (
a  ^c  b )  =  ( 0  -  ( a  ^c  b ) )
178177fveq2i 5684 . . . . . . . . . . . . . . . 16  |-  ( abs `  -u ( a  ^c  b ) )  =  ( abs `  (
0  -  ( a  ^c  b ) ) )
179174absnegd 12921 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  ( abs `  -u ( a  ^c  b ) )  =  ( abs `  (
a  ^c  b ) ) )
180178, 179syl5eqr 2481 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  ( abs `  ( 0  -  ( a  ^c 
b ) ) )  =  ( abs `  (
a  ^c  b ) ) )
181173, 176, 1803eqtrd 2471 . . . . . . . . . . . . . 14  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs 
o.  -  ) (
a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  =  ( abs `  (
a  ^c  b ) ) )
182181breq1d 4292 . . . . . . . . . . . . 13  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e  <->  ( abs `  ( a  ^c 
b ) )  < 
e ) )
183148, 182imbi12d 320 . . . . . . . . . . . 12  |-  ( ( v  e.  D  /\  ( a  e.  ( 0 [,) +oo )  /\  b  e.  D
) )  ->  (
( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e )  <-> 
( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) ) )
1841832ralbidva 2747 . . . . . . . . . . 11  |-  ( v  e.  D  ->  ( A. a  e.  (
0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e )  <->  A. a  e.  (
0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) ) )
185184rexbidv 2728 . . . . . . . . . 10  |-  ( v  e.  D  ->  ( E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e )  <->  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) ) )
186185ralbidv 2727 . . . . . . . . 9  |-  ( v  e.  D  ->  ( A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e )  <->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( abs `  a )  <  d  /\  ( abs `  (
v  -  b ) )  <  d )  ->  ( abs `  (
a  ^c  b ) )  <  e
) ) )
187123, 186mpbird 232 . . . . . . . 8  |-  ( v  e.  D  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e ) )
188 cnxmet 20196 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
189188a1i 11 . . . . . . . . . 10  |-  ( v  e.  D  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
190 xmetres2 19780 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( 0 [,) +oo )  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  e.  ( *Met `  ( 0 [,) +oo ) ) )
191189, 6, 190sylancl 657 . . . . . . . . 9  |-  ( v  e.  D  ->  (
( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )  e.  ( *Met `  (
0 [,) +oo )
) )
192 xmetres2 19780 . . . . . . . . . 10  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( D  X.  D ) )  e.  ( *Met `  D ) )
193189, 13, 192sylancl 657 . . . . . . . . 9  |-  ( v  e.  D  ->  (
( abs  o.  -  )  |`  ( D  X.  D
) )  e.  ( *Met `  D
) )
194124a1i 11 . . . . . . . . 9  |-  ( v  e.  D  ->  0  e.  ( 0 [,) +oo ) )
195 id 22 . . . . . . . . 9  |-  ( v  e.  D  ->  v  e.  D )
196 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) )
19721cnfldtopn 20205 . . . . . . . . . . . . 13  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
198 eqid 2435 . . . . . . . . . . . . 13  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )  =  ( MetOpen `  (
( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) )
199196, 197, 198metrest 19943 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( 0 [,) +oo )  C_  CC )  -> 
( Jt  ( 0 [,) +oo ) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) ) )
200188, 6, 199mp2an 667 . . . . . . . . . . 11  |-  ( Jt  ( 0 [,) +oo )
)  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) )
20165, 200eqtri 2455 . . . . . . . . . 10  |-  K  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  (
0 [,) +oo )
) ) )
202 eqid 2435 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( D  X.  D
) )  =  ( ( abs  o.  -  )  |`  ( D  X.  D ) )
203 eqid 2435 . . . . . . . . . . . . 13  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )
204202, 197, 203metrest 19943 . . . . . . . . . . . 12  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  D  C_  CC )  -> 
( Jt  D )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( D  X.  D ) ) ) )
205188, 13, 204mp2an 667 . . . . . . . . . . 11  |-  ( Jt  D )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D ) ) )
20638, 205eqtri 2455 . . . . . . . . . 10  |-  L  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( D  X.  D
) ) )
207201, 206, 197txmetcnp 19966 . . . . . . . . 9  |-  ( ( ( ( ( abs 
o.  -  )  |`  (
( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) )  e.  ( *Met `  ( 0 [,) +oo ) )  /\  (
( abs  o.  -  )  |`  ( D  X.  D
) )  e.  ( *Met `  D
)  /\  ( abs  o. 
-  )  e.  ( *Met `  CC ) )  /\  (
0  e.  ( 0 [,) +oo )  /\  v  e.  D )
)  ->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. 0 ,  v >. )  <->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC 
/\  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e ) ) ) )
208191, 193, 189, 194, 195, 207syl32anc 1221 . . . . . . . 8  |-  ( v  e.  D  ->  (
( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c 
y ) )  e.  ( ( ( K 
tX  L )  CnP 
J ) `  <. 0 ,  v >. )  <-> 
( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC  /\  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  ( 0 [,) +oo ) A. b  e.  D  ( ( ( 0 ( ( abs  o.  -  )  |`  ( ( 0 [,) +oo )  X.  ( 0 [,) +oo ) ) ) a )  <  d  /\  ( v ( ( abs  o.  -  )  |`  ( D  X.  D
) ) b )  <  d )  -> 
( ( 0 ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) v ) ( abs  o.  -  ) ( a ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) b ) )  <  e ) ) ) )
209119, 187, 208mpbir2and 908 . . . . . . 7  |-  ( v  e.  D  ->  (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. 0 ,  v >. ) )
210209ad2antlr 721 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  =  u )  ->  (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. 0 ,  v >. ) )
211 simpr 458 . . . . . . . 8  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  =  u )  ->  0  =  u )
212211opeq1d 4055 . . . . . . 7  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  =  u )  ->  <. 0 ,  v >.  =  <. u ,  v >. )
213212fveq2d 5685 . . . . . 6  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  =  u )  ->  (
( ( K  tX  L )  CnP  J
) `  <. 0 ,  v >. )  =  ( ( ( K  tX  L )  CnP  J
) `  <. u ,  v >. ) )
214210, 213eleqtrd 2511 . . . . 5  |-  ( ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D
)  /\  0  =  u )  ->  (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J
) `  <. u ,  v >. ) )
21545simprbi 461 . . . . . . 7  |-  ( u  e.  ( 0 [,) +oo )  ->  0  <_  u )
216215adantr 462 . . . . . 6  |-  ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  0  <_  u )
217 leloe 9451 . . . . . . 7  |-  ( ( 0  e.  RR  /\  u  e.  RR )  ->  ( 0  <_  u  <->  ( 0  <  u  \/  0  =  u ) ) )
2181, 47, 217sylancr 658 . . . . . 6  |-  ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  ( 0  <_  u  <->  ( 0  <  u  \/  0  =  u ) ) )
219216, 218mpbid 210 . . . . 5  |-  ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  ( 0  <  u  \/  0  =  u
) )
220118, 214, 219mpjaodan 779 . . . 4  |-  ( ( u  e.  ( 0 [,) +oo )  /\  v  e.  D )  ->  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c 
y ) )  e.  ( ( ( K 
tX  L )  CnP 
J ) `  <. u ,  v >. )
)
221220rgen2 2804 . . 3  |-  A. u  e.  ( 0 [,) +oo ) A. v  e.  D  ( x  e.  (
0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c 
y ) )  e.  ( ( ( K 
tX  L )  CnP 
J ) `  <. u ,  v >. )
222 fveq2 5681 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  ( ( ( K  tX  L )  CnP  J ) `  z )  =  ( ( ( K  tX  L )  CnP  J
) `  <. u ,  v >. ) )
223222eleq2d 2502 . . . 4  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  z )  <->  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  <. u ,  v >.
) ) )
224223ralxp 4970 . . 3  |-  ( A. z  e.  ( (
0 [,) +oo )  X.  D ) ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  z )  <->  A. u  e.  ( 0 [,) +oo ) A. v  e.  D  ( x  e.  (
0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c 
y ) )  e.  ( ( ( K 
tX  L )  CnP 
J ) `  <. u ,  v >. )
)
225221, 224mpbir 209 . 2  |-  A. z  e.  ( ( 0 [,) +oo )  X.  D
) ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  z )
226 cncnp 18728 . . 3  |-  ( ( ( K  tX  L
)  e.  (TopOn `  ( ( 0 [,) +oo )  X.  D
) )  /\  J  e.  (TopOn `  CC )
)  ->  ( (
x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( K  tX  L
)  Cn  J )  <-> 
( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC  /\  A. z  e.  ( ( 0 [,) +oo )  X.  D ) ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  z ) ) ) )
227100, 22, 226mp2an 667 . 2  |-  ( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( K  tX  L
)  Cn  J )  <-> 
( ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) ) : ( ( 0 [,) +oo )  X.  D ) --> CC  /\  A. z  e.  ( ( 0 [,) +oo )  X.  D ) ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( ( K  tX  L )  CnP  J ) `  z ) ) )
22820, 225, 227mpbir2an 906 1  |-  ( x  e.  ( 0 [,) +oo ) ,  y  e.  D  |->  ( x  ^c  y ) )  e.  ( ( K 
tX  L )  Cn  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1757    =/= wne 2598   A.wral 2707   E.wrex 2708   _Vcvv 2964    C_ wss 3318   ifcif 3781   <.cop 3873   class class class wbr 4282    X. cxp 4827   `'ccnv 4828   dom cdm 4829   ran crn 4830    |` cres 4831   "cima 4832    o. ccom 4833    Fn wfn 5403   -->wf 5404   ` cfv 5408  (class class class)co 6082    e. cmpt2 6084   CCcc 9270   RRcr 9271   0cc0 9272   1c1 9273   +oocpnf 9405   RR*cxr 9407    < clt 9408    <_ cle 9409    - cmin 9585   -ucneg 9586    / cdiv 9983   2c2 10361   RR+crp 10981   (,)cioo 11290   [,)cico 11292   Recre 12572   abscabs 12709   ↾t crest 14344   TopOpenctopn 14345   topGenctg 14361   *Metcxmt 17647   MetOpencmopn 17652  ℂfldccnfld 17664   Topctop 18342  TopOnctopon 18343   intcnt 18465    Cn ccn 18672    CnP ccnp 18673    tX ctx 18977    ^c ccxp 21894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-rep 4393  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-inf2 7837  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350  ax-addf 9351  ax-mulf 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-int 4119  df-iun 4163  df-iin 4164  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-se 4669  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-isom 5417  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6311  df-om 6468  df-1st 6568  df-2nd 6569  df-supp 6682  df-recs 6820  df-rdg 6854  df-1o 6910  df-2o 6911  df-oadd 6914  df-er 7091  df-map 7206  df-pm 7207  df-ixp 7254  df-en 7301  df-dom 7302  df-sdom 7303  df-fin 7304  df-fsupp 7611  df-fi 7651  df-sup 7681  df-oi 7714  df-card 8099  df-cda 8327  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-3 10371  df-4 10372  df-5 10373  df-6 10374  df-7 10375  df-8 10376  df-9 10377  df-10 10378  df-n0 10570  df-z 10637  df-dec 10746  df-uz 10852  df-q 10944  df-rp 10982  df-xneg 11079  df-xadd 11080  df-xmul 11081  df-ioo 11294  df-ioc 11295  df-ico 11296  df-icc 11297  df-fz 11427  df-fzo 11535  df-fl 11628  df-mod 11695  df-seq 11793  df-exp 11852  df-fac 12038  df-bc 12065  df-hash 12090  df-shft 12542  df-cj 12574  df-re 12575  df-im 12576  df-sqr 12710  df-abs 12711  df-limsup 12935  df-clim 12952  df-rlim 12953  df-sum 13150  df-ef 13338  df-sin 13340  df-cos 13341  df-tan 13342  df-pi 13343  df-struct 14161  df-ndx 14162  df-slot 14163  df-base 14164  df-sets 14165  df-ress 14166  df-plusg 14236  df-mulr 14237  df-starv 14238  df-sca 14239  df-vsca 14240  df-ip 14241  df-tset 14242  df-ple 14243  df-ds 14245  df-unif 14246  df-hom 14247  df-cco 14248  df-rest 14346  df-topn 14347  df-0g 14365  df-gsum 14366  df-topgen 14367  df-pt 14368  df-prds 14371  df-xrs 14425  df-qtop 14430  df-imas 14431  df-xps 14433  df-mre 14509  df-mrc 14510  df-acs 14512  df-mnd 15400  df-submnd 15450  df-mulg 15530  df-cntz 15817  df-cmn 16261  df-psmet 17655  df-xmet 17656  df-met 17657  df-bl 17658  df-mopn 17659  df-fbas 17660  df-fg 17661  df-cnfld 17665  df-top 18347  df-bases 18349  df-topon 18350  df-topsp 18351  df-cld 18467  df-ntr 18468  df-cls 18469  df-nei 18546  df-lp 18584  df-perf 18585  df-cn 18675  df-cnp 18676  df-haus 18763  df-cmp 18834  df-tx 18979  df-hmeo 19172  df-fil 19263  df-fm 19355  df-flim 19356  df-flf 19357  df-xms 19739  df-ms 19740  df-tms 19741  df-cncf 20298  df-limc 21185  df-dv 21186  df-log 21895  df-cxp 21896
This theorem is referenced by:  resqrcn  22074
  Copyright terms: Public domain W3C validator