Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altgsumbcALT Structured version   Visualization version   GIF version

Theorem altgsumbcALT 41924
Description: Alternate proof of altgsumbc 41923, using Pascal's rule (bcpascm1 41922) instead of the binomial theorem (binom 14401). (Contributed by AV, 8-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
altgsumbcALT (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Distinct variable group:   𝑘,𝑁

Proof of Theorem altgsumbcALT
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 12213 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
2 bcpascm1 41922 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (((𝑁 − 1)C𝑘) + ((𝑁 − 1)C(𝑘 − 1))) = (𝑁C𝑘))
31, 2sylan2 490 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (((𝑁 − 1)C𝑘) + ((𝑁 − 1)C(𝑘 − 1))) = (𝑁C𝑘))
43eqcomd 2616 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) = (((𝑁 − 1)C𝑘) + ((𝑁 − 1)C(𝑘 − 1))))
54oveq2d 6565 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑𝑘) · (𝑁C𝑘)) = ((-1↑𝑘) · (((𝑁 − 1)C𝑘) + ((𝑁 − 1)C(𝑘 − 1)))))
6 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
7 negcl 10160 . . . . . . . 8 (1 ∈ ℂ → -1 ∈ ℂ)
8 elfznn0 12302 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 expcl 12740 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (-1↑𝑘) ∈ ℂ)
107, 8, 9syl2an 493 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
116, 10mpan 702 . . . . . 6 (𝑘 ∈ (0...𝑁) → (-1↑𝑘) ∈ ℂ)
1211adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
13 nnm1nn0 11211 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
14 bccl 12971 . . . . . . 7 (((𝑁 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁 − 1)C𝑘) ∈ ℕ0)
1514nn0cnd 11230 . . . . . 6 (((𝑁 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑁 − 1)C𝑘) ∈ ℂ)
1613, 1, 15syl2an 493 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 1)C𝑘) ∈ ℂ)
17 peano2zm 11297 . . . . . . 7 (𝑘 ∈ ℤ → (𝑘 − 1) ∈ ℤ)
181, 17syl 17 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑘 − 1) ∈ ℤ)
19 bccl 12971 . . . . . . 7 (((𝑁 − 1) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℕ0)
2019nn0cnd 11230 . . . . . 6 (((𝑁 − 1) ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℂ)
2113, 18, 20syl2an 493 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℂ)
2212, 16, 21adddid 9943 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑𝑘) · (((𝑁 − 1)C𝑘) + ((𝑁 − 1)C(𝑘 − 1)))) = (((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))))
235, 22eqtrd 2644 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑𝑘) · (𝑁C𝑘)) = (((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))))
2423sumeq2dv 14281 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = Σ𝑘 ∈ (0...𝑁)(((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))))
25 fzfid 12634 . . . 4 (𝑁 ∈ ℕ → (0...𝑁) ∈ Fin)
26 neg1cn 11001 . . . . . . 7 -1 ∈ ℂ
2726a1i 11 . . . . . 6 (𝑁 ∈ ℕ → -1 ∈ ℂ)
2827, 8, 9syl2an 493 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → (-1↑𝑘) ∈ ℂ)
2928, 16mulcld 9939 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑𝑘) · ((𝑁 − 1)C𝑘)) ∈ ℂ)
30 1z 11284 . . . . . . . 8 1 ∈ ℤ
3130a1i 11 . . . . . . 7 (𝑘 ∈ (0...𝑁) → 1 ∈ ℤ)
321, 31zsubcld 11363 . . . . . 6 (𝑘 ∈ (0...𝑁) → (𝑘 − 1) ∈ ℤ)
3313, 32, 20syl2an 493 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℂ)
3428, 33mulcld 9939 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...𝑁)) → ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) ∈ ℂ)
3525, 29, 34fsumadd 14317 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)(((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))) = (Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))))
3630a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
37 0zd 11266 . . . . . 6 (𝑁 ∈ ℕ → 0 ∈ ℤ)
38 nnz 11276 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
39 oveq2 6557 . . . . . . 7 (𝑘 = (𝑗 − 1) → (-1↑𝑘) = (-1↑(𝑗 − 1)))
40 oveq2 6557 . . . . . . 7 (𝑘 = (𝑗 − 1) → ((𝑁 − 1)C𝑘) = ((𝑁 − 1)C(𝑗 − 1)))
4139, 40oveq12d 6567 . . . . . 6 (𝑘 = (𝑗 − 1) → ((-1↑𝑘) · ((𝑁 − 1)C𝑘)) = ((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))))
4236, 37, 38, 29, 41fsumshft 14354 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C𝑘)) = Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))))
43 0p1e1 11009 . . . . . . . 8 (0 + 1) = 1
4443oveq1i 6559 . . . . . . 7 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
4544a1i 11 . . . . . 6 (𝑁 ∈ ℕ → ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1)))
4645sumeq1d 14279 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ ((0 + 1)...(𝑁 + 1))((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = Σ𝑗 ∈ (1...(𝑁 + 1))((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))))
47 elnnuz 11600 . . . . . . . 8 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
4847biimpi 205 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4926a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 + 1))) → -1 ∈ ℂ)
50 elfznn 12241 . . . . . . . . . . 11 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℕ)
51 nnm1nn0 11211 . . . . . . . . . . 11 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
5250, 51syl 17 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈ ℕ0)
5352adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 + 1))) → (𝑗 − 1) ∈ ℕ0)
5449, 53expcld 12870 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 + 1))) → (-1↑(𝑗 − 1)) ∈ ℂ)
55 elfzelz 12213 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 + 1)) → 𝑗 ∈ ℤ)
56 elfzel1 12212 . . . . . . . . . 10 (𝑗 ∈ (1...(𝑁 + 1)) → 1 ∈ ℤ)
5755, 56zsubcld 11363 . . . . . . . . 9 (𝑗 ∈ (1...(𝑁 + 1)) → (𝑗 − 1) ∈ ℤ)
58 bccl 12971 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℕ0 ∧ (𝑗 − 1) ∈ ℤ) → ((𝑁 − 1)C(𝑗 − 1)) ∈ ℕ0)
5958nn0cnd 11230 . . . . . . . . 9 (((𝑁 − 1) ∈ ℕ0 ∧ (𝑗 − 1) ∈ ℤ) → ((𝑁 − 1)C(𝑗 − 1)) ∈ ℂ)
6013, 57, 59syl2an 493 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 + 1))) → ((𝑁 − 1)C(𝑗 − 1)) ∈ ℂ)
6154, 60mulcld 9939 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 + 1))) → ((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) ∈ ℂ)
62 oveq1 6556 . . . . . . . . 9 (𝑗 = (𝑁 + 1) → (𝑗 − 1) = ((𝑁 + 1) − 1))
6362oveq2d 6565 . . . . . . . 8 (𝑗 = (𝑁 + 1) → (-1↑(𝑗 − 1)) = (-1↑((𝑁 + 1) − 1)))
6462oveq2d 6565 . . . . . . . 8 (𝑗 = (𝑁 + 1) → ((𝑁 − 1)C(𝑗 − 1)) = ((𝑁 − 1)C((𝑁 + 1) − 1)))
6563, 64oveq12d 6567 . . . . . . 7 (𝑗 = (𝑁 + 1) → ((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = ((-1↑((𝑁 + 1) − 1)) · ((𝑁 − 1)C((𝑁 + 1) − 1))))
6648, 61, 65fsump1 14329 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 + 1))((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = (Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) + ((-1↑((𝑁 + 1) − 1)) · ((𝑁 − 1)C((𝑁 + 1) − 1)))))
67 nncn 10905 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
68 pncan1 10333 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
6967, 68syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
70 nnnn0 11176 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
7169, 70eqeltrd 2688 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℕ0)
7271nn0zd 11356 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) ∈ ℤ)
73 nnre 10904 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
74 ltm1 10742 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ → (𝑁 − 1) < 𝑁)
7573, 74syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) < 𝑁)
7675, 69breqtrrd 4611 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 1) < ((𝑁 + 1) − 1))
7776olcd 407 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁 + 1) − 1) < 0 ∨ (𝑁 − 1) < ((𝑁 + 1) − 1)))
78 bcval4 12956 . . . . . . . . . 10 (((𝑁 − 1) ∈ ℕ0 ∧ ((𝑁 + 1) − 1) ∈ ℤ ∧ (((𝑁 + 1) − 1) < 0 ∨ (𝑁 − 1) < ((𝑁 + 1) − 1))) → ((𝑁 − 1)C((𝑁 + 1) − 1)) = 0)
7913, 72, 77, 78syl3anc 1318 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)C((𝑁 + 1) − 1)) = 0)
8079oveq2d 6565 . . . . . . . 8 (𝑁 ∈ ℕ → ((-1↑((𝑁 + 1) − 1)) · ((𝑁 − 1)C((𝑁 + 1) − 1))) = ((-1↑((𝑁 + 1) − 1)) · 0))
8127, 71expcld 12870 . . . . . . . . 9 (𝑁 ∈ ℕ → (-1↑((𝑁 + 1) − 1)) ∈ ℂ)
8281mul01d 10114 . . . . . . . 8 (𝑁 ∈ ℕ → ((-1↑((𝑁 + 1) − 1)) · 0) = 0)
8380, 82eqtrd 2644 . . . . . . 7 (𝑁 ∈ ℕ → ((-1↑((𝑁 + 1) − 1)) · ((𝑁 − 1)C((𝑁 + 1) − 1))) = 0)
8483oveq2d 6565 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) + ((-1↑((𝑁 + 1) − 1)) · ((𝑁 − 1)C((𝑁 + 1) − 1)))) = (Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) + 0))
85 oveq1 6556 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝑗 − 1) = (𝑘 − 1))
8685oveq2d 6565 . . . . . . . . . . 11 (𝑗 = 𝑘 → (-1↑(𝑗 − 1)) = (-1↑(𝑘 − 1)))
8785oveq2d 6565 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝑁 − 1)C(𝑗 − 1)) = ((𝑁 − 1)C(𝑘 − 1)))
8886, 87oveq12d 6567 . . . . . . . . . 10 (𝑗 = 𝑘 → ((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
8988cbvsumv 14274 . . . . . . . . 9 Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))
9089a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
9190oveq1d 6564 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) + 0) = (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + 0))
92 fzfid 12634 . . . . . . . . 9 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
9326a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ)
94 elfznn 12241 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
95 nnm1nn0 11211 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
9694, 95syl 17 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0)
9796adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℕ0)
9893, 97expcld 12870 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (-1↑(𝑘 − 1)) ∈ ℂ)
99 elfzelz 12213 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
100 elfzel1 12212 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 1 ∈ ℤ)
10199, 100zsubcld 11363 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℤ)
10213, 101, 19syl2an 493 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℕ0)
103102nn0cnd 11230 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁 − 1)C(𝑘 − 1)) ∈ ℂ)
10498, 103mulcld 9939 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) ∈ ℂ)
10592, 104fsumcl 14311 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) ∈ ℂ)
106105addid1d 10115 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + 0) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
10791, 106eqtrd 2644 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑗 ∈ (1...𝑁)((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) + 0) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
10866, 84, 1073eqtrd 2648 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (1...(𝑁 + 1))((-1↑(𝑗 − 1)) · ((𝑁 − 1)C(𝑗 − 1))) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
10942, 46, 1083eqtrd 2648 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C𝑘)) = Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
110 elnn0uz 11601 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
11170, 110sylib 207 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘0))
112 oveq2 6557 . . . . . . 7 (𝑘 = 0 → (-1↑𝑘) = (-1↑0))
113 oveq1 6556 . . . . . . . 8 (𝑘 = 0 → (𝑘 − 1) = (0 − 1))
114113oveq2d 6565 . . . . . . 7 (𝑘 = 0 → ((𝑁 − 1)C(𝑘 − 1)) = ((𝑁 − 1)C(0 − 1)))
115112, 114oveq12d 6567 . . . . . 6 (𝑘 = 0 → ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = ((-1↑0) · ((𝑁 − 1)C(0 − 1))))
116111, 34, 115fsum1p 14326 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = (((-1↑0) · ((𝑁 − 1)C(0 − 1))) + Σ𝑘 ∈ ((0 + 1)...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))))
11727exp0d 12864 . . . . . . . 8 (𝑁 ∈ ℕ → (-1↑0) = 1)
118 0z 11265 . . . . . . . . . . 11 0 ∈ ℤ
119 zsubcl 11296 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
120118, 30, 119mp2an 704 . . . . . . . . . 10 (0 − 1) ∈ ℤ
121120a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (0 − 1) ∈ ℤ)
122 0re 9919 . . . . . . . . . . 11 0 ∈ ℝ
123 ltm1 10742 . . . . . . . . . . 11 (0 ∈ ℝ → (0 − 1) < 0)
124122, 123mp1i 13 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 − 1) < 0)
125124orcd 406 . . . . . . . . 9 (𝑁 ∈ ℕ → ((0 − 1) < 0 ∨ (𝑁 − 1) < (0 − 1)))
126 bcval4 12956 . . . . . . . . 9 (((𝑁 − 1) ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ (𝑁 − 1) < (0 − 1))) → ((𝑁 − 1)C(0 − 1)) = 0)
12713, 121, 125, 126syl3anc 1318 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1)C(0 − 1)) = 0)
128117, 127oveq12d 6567 . . . . . . 7 (𝑁 ∈ ℕ → ((-1↑0) · ((𝑁 − 1)C(0 − 1))) = (1 · 0))
1296a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℂ)
130129mul01d 10114 . . . . . . 7 (𝑁 ∈ ℕ → (1 · 0) = 0)
131128, 130eqtrd 2644 . . . . . 6 (𝑁 ∈ ℕ → ((-1↑0) · ((𝑁 − 1)C(0 − 1))) = 0)
13243a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → (0 + 1) = 1)
133132oveq1d 6564 . . . . . . . 8 (𝑁 ∈ ℕ → ((0 + 1)...𝑁) = (1...𝑁))
13499zcnd 11359 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
135 npcan1 10334 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
136135eqcomd 2616 . . . . . . . . . . . . . 14 (𝑘 ∈ ℂ → 𝑘 = ((𝑘 − 1) + 1))
137134, 136syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑁) → 𝑘 = ((𝑘 − 1) + 1))
138137adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 = ((𝑘 − 1) + 1))
139138oveq2d 6565 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (-1↑𝑘) = (-1↑((𝑘 − 1) + 1)))
140 expp1 12729 . . . . . . . . . . . 12 ((-1 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (-1↑((𝑘 − 1) + 1)) = ((-1↑(𝑘 − 1)) · -1))
14127, 96, 140syl2an 493 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (-1↑((𝑘 − 1) + 1)) = ((-1↑(𝑘 − 1)) · -1))
142139, 141eqtrd 2644 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (-1↑𝑘) = ((-1↑(𝑘 − 1)) · -1))
143142oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = (((-1↑(𝑘 − 1)) · -1) · ((𝑁 − 1)C(𝑘 − 1))))
14498, 93mulcomd 9940 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((-1↑(𝑘 − 1)) · -1) = (-1 · (-1↑(𝑘 − 1))))
145144oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (((-1↑(𝑘 − 1)) · -1) · ((𝑁 − 1)C(𝑘 − 1))) = ((-1 · (-1↑(𝑘 − 1))) · ((𝑁 − 1)C(𝑘 − 1))))
14693, 98, 103mulassd 9942 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((-1 · (-1↑(𝑘 − 1))) · ((𝑁 − 1)C(𝑘 − 1))) = (-1 · ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
147143, 145, 1463eqtrd 2648 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = (-1 · ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
148133, 147sumeq12rdv 14285 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((0 + 1)...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = Σ𝑘 ∈ (1...𝑁)(-1 · ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
14992, 27, 104fsummulc2 14358 . . . . . . 7 (𝑁 ∈ ℕ → (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))) = Σ𝑘 ∈ (1...𝑁)(-1 · ((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
150148, 149eqtr4d 2647 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ ((0 + 1)...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
151131, 150oveq12d 6567 . . . . 5 (𝑁 ∈ ℕ → (((-1↑0) · ((𝑁 − 1)C(0 − 1))) + Σ𝑘 ∈ ((0 + 1)...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))) = (0 + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))))
15227, 105mulcld 9939 . . . . . 6 (𝑁 ∈ ℕ → (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))) ∈ ℂ)
153152addid2d 10116 . . . . 5 (𝑁 ∈ ℕ → (0 + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))) = (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
154116, 151, 1533eqtrd 2648 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1))) = (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
155109, 154oveq12d 6567 . . 3 (𝑁 ∈ ℕ → (Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))) = (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))))
15635, 155eqtrd 2644 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)(((-1↑𝑘) · ((𝑁 − 1)C𝑘)) + ((-1↑𝑘) · ((𝑁 − 1)C(𝑘 − 1)))) = (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))))
157105mulm1d 10361 . . . 4 (𝑁 ∈ ℕ → (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))) = -Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))
158157oveq2d 6565 . . 3 (𝑁 ∈ ℕ → (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))) = (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + -Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))))
159105negidd 10261 . . 3 (𝑁 ∈ ℕ → (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + -Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1)))) = 0)
160158, 159eqtrd 2644 . 2 (𝑁 ∈ ℕ → (Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))) + (-1 · Σ𝑘 ∈ (1...𝑁)((-1↑(𝑘 − 1)) · ((𝑁 − 1)C(𝑘 − 1))))) = 0)
16124, 156, 1603eqtrd 2648 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) · (𝑁C𝑘)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  cexp 12722  Ccbc 12951  Σcsu 14264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator